Do you want to publish a course? Click here

ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions -- II. Compact objects in ACA observations and star formation scaling relations

77   0   0.0 ( 0 )
 Added by Tie Liu
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report studies of the relationships between the total bolometric luminosity ($L_{rm bol}$ or $L_{rm TIR}$) and the molecular line luminosities of $J=1-0$ transitions of H$^{13}$CN, H$^{13}$CO$^+$, HCN, and HCO$^+$ with data obtained from ACA observations in the ATOMS survey of 146 active Galactic star forming regions. The correlations between $L_{rm bol}$ and molecular line luminosities $L_{rm mol}$ of the four transitions all appear to be approximately linear. Line emission of isotopologues shows as large scatters in $L_{rm bol}$-$L_{rm mol}$ relations as their main line emission. The log($L_{rm bol}$/$L_{rm mol}$) for different molecular line tracers have similar distributions. The $L_{rm bol}$-to-$L_{rm mol}$ ratios do not change with galactocentric distances ($R_{rm GC}$) and clump masses ($M_{rm clump}$). The molecular line luminosity ratios (HCN-to-HCO$^+$, H$^{13}$CN-to-H$^{13}$CO$^+$, HCN-to-H$^{13}$CN and HCO$^+$-to-H$^{13}$CO$^+$) all appear constant against $L_{rm bol}$, dust temperature ($T_{rm d}$), $M_{rm clump}$ and $R_{rm GC}$. Our studies suggest that both the main lines and isotopologue lines are good tracers of the total masses of dense gas in Galactic molecular clumps. The large optical depths of main lines do not affect the interpretation of the slopes in star formation relations. We find that the mean star formation efficiency (SFE) of massive Galactic clumps in the ATOMS survey is reasonably consistent with other measures of the SFE for dense gas, even those using very different tracers or examining very different spatial scales.



rate research

Read More

The ATOMS, standing for {it ALMA Three-millimeter Observations of Massive Star-forming regions}, survey has observed 146 active star forming regions with ALMA Band 3, aiming to systematically investigate the spatial distribution of various dense gas tracers in a large sample of Galactic massive clumps, to study the roles of stellar feedback in star formation, and to characterize filamentary structures inside massive clumps. In this work, the observations, data analysis, and example science of the ATOMS survey are presented, using a case study for the G9.62+0.19 complex. Toward this source, some transitions, commonly assumed to trace dense gas, including CS $J = 2-1$, HCO$^+$ $J = 1-0$ and HCN $J = 1-0$, are found to show extended gas emission in low density regions within the clump; less than 25% of their emission is from dense cores. SO, CH$_3$OH, H$^{13}$CN and HC$_3$N show similar morphologies in their spatial distributions and reveal well the dense cores. Widespread narrow SiO emission is present (over $sim$1 pc), which may be caused by slow shocks from large--scale colliding flows or H{sc ii} regions. Stellar feedback from an expanding H{sc ii} region has greatly reshaped the natal clump, significantly changed the spatial distribution of gas, and may also account for the sequential high-mass star formation in the G9.62+0.19 complex. The ATOMS survey data can be jointly analyzed with other survey data, e.g., MALT90, Orion B, EMPIRE, ALMA_IMF, and ALMAGAL, to deepen our understandings of dense gas star formation scaling relations and massive proto-cluster formation.
We have identified 453 compact dense cores in 3 mm continuum emission maps in the ATOMS (ALMA Three-millimeter Observations of Massive Star-forming regions) survey, and compiled three catalogues of high-mass star forming cores. One catalogue, referred to as H/UC-HII catalogue, includes 89 cores that enshroud hyper/ultra compact (H/UC) HII regions as characterized by associated compact H40alpha emission. A second catalogue, referred to as pure s-cHMC, includes 32 candidate Hot Molecular Cores (HMCs) showing rich spectra (N>20lines) of complex organic molecules (COMs) but not associated with H/UC-HII regions. The third catalogue, referred to as pure w-cHMC, includes 58 candidate HMCs with relatively low levels of COM richness and not associated with H/UC-HII regions. These three catalogues of dense cores provide an important foundation for future studies of the early stages of high-mass star formation across the Milky Way. We also find that nearly half of H/UC-HII cores are candidate HMCs. From the number counts of COM-containing and H/UC-HII cores, we suggest that the duration of high-mass protostellar cores showing chemically rich features is at least comparable to the lifetime of H/UC-HII regions. For cores in the H/UC-HII catalogue, the width of the H40alpha line increases as the core size decreases, suggesting that the non-thermal dynamical and/or pressure line-broadening mechanisms dominate on the smaller scales of the H/UC-HII cores.
We present spectral line mapping observations toward four massive star-forming regions (Cepheus A, DR21S, S76E and G34.26+0.15), with the IRAM 30 meter telescope at 2 mm and 3 mm bands. Totally 396 spectral lines from 51 molecules, one helium recombination line, ten hydrogen recombination lines, and 16 unidentified lines were detected in these four sources. An emission line of nitrosyl cyanide (ONCN, 14$_{0,14}$-13$_{0,13}$) was detected in G34.26+0.15, as first detection in massive star-forming regions. We found that the $c$-C$_{3}$H$_{2}$ and NH$_{2}$D show enhancement in shocked regions as suggested by evidences of SiO and/or SO emission. Column density and rotational temperature of CH$_{3}$CN were estimated with the rotational diagram method for all four sources. Isotope abundance ratios of $^{12}$C/$^{13}$C were derived using HC$_{3}$N and its $^{13}$C isotopologue, which were around 40 in all four massive star-forming regions and slightly lower than the local interstellar value ($sim$65). $^{14}$N/$^{15}$N and $^{16}$O/$^{18}$O abundance ratios in these sources were also derived using double isotopic method, which were slightly lower than that in local interstellar medium. Except for Cep A, $^{33}$S/$^{34}$S ratio in the other three targets were derived, which were similar to that in the local interstellar medium. The column density ratios of N(DCN)/N(HCN) and N(DCO$^{+}$)/N(HCO$^{+}$) in these sources were more than two orders of magnitude higher than the elemental [D]/[H] ratio, which is 1.5$times$10$ ^{-5}$. Our results show the later stage sources, G34.26+0.15 in particular, present more molecular species than earlier stage ones. Evidence of shock activity is seen in all stages studied.
We present 1.05 mm ALMA observations of the deeply embedded high-mass protocluster G11.92-0.61, designed to search for low-mass cores within the accretion reservoir of the massive protostars. Our ALMA mosaic, which covers an extent of ~0.7 pc at sub-arcsecond (~1400 au) resolution, reveals a rich population of 16 new millimetre continuum sources surrounding the three previously-known millimetre cores. Most of the new sources are located in the outer reaches of the accretion reservoir: the median projected separation from the central, massive (proto)star MM1 is ~0.17 pc. The derived physical properties of the new millimetre continuum sources are consistent with those of low-mass prestellar and protostellar cores in nearby star-forming regions: the median mass, radius, and density of the new sources are 1.3 Msun, 1600 au, and n(H2)~10^7 cm^-3. At least three of the low-mass cores in G11.92-0.61 drive molecular outflows, traced by high-velocity 12CO(3-2) (observed with the SMA) and/or by H2CO and CH3OH emission (observed with ALMA). This finding, combined with the known outflow/accretion activity of MM1, indicates that high- and low-mass stars are forming (accreting) simultaneously within this protocluster. Our ALMA results are consistent with the predictions of competitive-accretion-type models in which high-mass stars form along with their surrounding clusters.
We present the study of deuteration of cyanoacetylene (HC$_3$N) towards a sample of 28 high-mass star-forming cores divided into different evolutionary stages, from starless to evolved protostellar cores. We report for the first time the detection of DC$_3$N towards 15 high-mass cores. The abundance ratios of DC$_3$N with respect HC$_3$N range in the interval 0.003$-$0.022, lower than those found in low-mas protostars and dark clouds. No significant trend with the evolutionary stage, or with the kinetic temperature of the region, has been found. We compare the level of deuteration of HC$_3$N with those of other molecules towards the same sample, finding weak correlation with species formed only or predominantly in gas phase (N$_2$H$^+$ and HNC, respectively), and no correlation with species formed only or predominantly on dust grains (CH$_3$OH and NH$_3$, respectively). We also present a single-dish map of DC$_3$N towards the protocluster IRAS 05358+3543, which shows that DC$_3$N traces an extended envelope ($sim$0.37 pc) and peaks towards two cold condensations separated from the positions of the protostars and the dust continuum. The observations presented in this work suggest that deuteration of HC$_3$N is produced in the gas of the cold outer parts of massive star-forming clumps, giving us an estimate of the deuteration factor prior to the formation of denser gas.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا