Do you want to publish a course? Click here

Purely Triplet Seesaw and Leptogenesis within Cosmological Bound, Dark Matter and Vacuum Stability

100   0   0.0 ( 0 )
 Added by Mina Ketan Parida
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

In a novel standard model extension it has been suggested that, even in the absence of right-handed neutrinos and type-I seesaw, purely triplet leptogenesis leading to baryon asymmetry of the universe can be realised by two heavy Higgs triplets which also provide type-II seesaw ansatz for neutrino masses. In this work we discuss this model for hierarchical neutrino masses in concordance with recently determined cosmologocal bounds and oscillation data including $theta_{23}$ in the second octant and large Dirac CP phases. We also address the issues on dark matter and vacuum stability of the scalar potential in a minimal extension of this model. We find that for both normal and inverted orderings the model fits the oscillation data with the sum of the three neutrino masses consistent with cosmological bounds determined from Planck satellite data. In addition using this model ansatz for CP-asymmetry and solutions of Boltzmann equations, we also show how successful prediction of baryon asymmetry emerges in the cases of both unflavoured and two-flavoured leptogeneses. With additional $Z_2$ discrete symmetry, a minimal extension of this model is shown to be capable of predicting a scalar singlet WIMP dark matter in agreement with direct and indirect observations. Whereas in the original model, the renormalization group running of the scalar potential renders it negatve leading to vacuum instability, the presence of the dark matter in the minimally extended model ensures stability. Although the combined constraints due to relic density and direct detection cross section allow this scalar singlet dark matter mass to be $m_{xi}=750$ GeV, the additional vacuum stability constraint pushes this limiting value to $m_{xi}=1.3$ TeV which is verifiable by ongoing experiments. We also dicuss constraint on the model parameters for the radiative stability of the standard Higgs mass.



rate research

Read More

We discuss the possibility to find an upper bound on the seesaw scale using the cosmological bound on the cold dark matter relic density. We investigate a simple relation between the origin of neutrino masses and the properties of a dark matter candidate in a simple theory where the new symmetry breaking scale defines the seesaw scale. Imposing the cosmological bounds, we find an upper bound of order multi-TeV on the lepton number violation scale. We investigate the predictions for direct and indirect detection dark matter experiments, and the possible signatures at the Large Hadron Collider.
538 - Chian-Shu Chen , Yong Tang 2012
Motivated by the discovery hint of the Standard Model (SM) Higgs mass around 125 GeV at the LHC, we study the vacuum stability and perturbativity bounds on Higgs scalar of the SM extensions including neutrinos and dark matter (DM). Guided by the SM gauge symmetry and the minimal changes in the SM Higgs potential we consider two extensions of neutrino sector (Type-I and Type-III seesaw mechanisms) and DM sector (a real scalar singlet (darkon) and minimal dark matter (MDM)) respectively. The darkon contributes positively to the $beta$ function of the Higgs quartic coupling $lambda$ and can stabilize the SM vacuum up to high scale. Similar to the top quark in the SM we find the cause of instability is sensitive to the size of new Yukawa couplings between heavy neutrinos and Higgs boson, namely, the scale of seesaw mechanism. MDM and Type-III seesaw fermion triplet, two nontrivial representations of $SU(2)_{L}$ group, will bring the additional positive contributions to the gauge coupling $g_{2}$ renormalization group (RG) evolution and would also help to stabilize the electroweak vacuum up to high scale.
We consider the introduction of a complex scalar field carrying a global lepton number charge to the Standard Model and the Higgs inflation framework. The conditions are investigated under which this model can simultaneously ensure Higgs vacuum stability up to the Planck scale, successful inflation, non-thermal Leptogenesis via the pendulum mechanism, and light neutrino masses. These can be simultaneously achieved when the scalar lepton is minimally coupled to gravity, that is, when standard Higgs inflation and reheating proceed without the interference of the additional scalar degrees of freedom. If the scalar lepton also has a non-minimal coupling to gravity, a multi-field inflation scenario is induced, with interesting interplay between the successful inflation constraints and those from vacuum stability and Leptogenesis. The parameter region that can simultaneously achieve the above goals is explored.
We study $S_{4}$ flavor symmetric inverse seesaw model which has the possibility of simultaneously addressing neutrino phenomenology, dark matter (DM) and baryon asymmetry of the universe (BAU) through leptogenesis. The model is the extension of the standard model by the addition of two right handed neutrinos and three sterile fermions leading to a keV scale sterile neutrino dark matter and two pairs of quasi-Dirac states. The CP violating decay of the lightest quasi- Dirac pair present in the model generates lepton asymmetry which then converts to baryon asymmetry of the universe. Thus this model can provide a simultaneous solution for non zero neutrino mass, dark matter content of the universes and the observed baryon asymmetry. The $S_{4}$ flavor symmetry in this model is augmented by additional $Z_{4}times Z_{3}$ symmetry to constrain the Yukawa Lagrangian. A detailed numerical analysis has been carried out to obtain dark matter mass, DM-active mixing as well as BAU both for normal hierarchy as well as inverted hierarchy. We have tried to correlate the two cosmological observables and found a common parameter space satisfying the DM phenomenology and BAU. The parameter space of the model is further constrained from the latest cosmological bounds on the above mentioned observables.
We consider a class of gauged $U(1)$ extensions of the Standard Model (SM), where the light neutrino masses are generated by an inverse seesaw mechanism. In addition to the three right handed neutrinos, we add three singlet fermions and demand an extra $Z_2$ symmetry under which, the third generations of both of the neutral fermions are odd, which in turn gives us a stable dark matter candidate. We express the $U(1)$ charges of all the fermions in terms of the U(1) charges of the standard model Higgs and the new complex scalar. We study the bounds on the parameters of the model from vacuum stability, perturbative unitarity, dark matter relic density and direct detection constraints. We also obtain the collider constraints on the $Z$ mass and the $U(1)$ gauge coupling. Finally we compare all the bounds on the $Z$ mass versus the $U(1)$ gauge coupling plane.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا