Do you want to publish a course? Click here

New perspectives on covariant quantum error correction

70   0   0.0 ( 0 )
 Added by Sisi Zhou
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Covariant codes are quantum codes such that a symmetry transformation on the logical system could be realized by a symmetry transformation on the physical system, usually with limited capability of performing quantum error correction (an important case being the Eastin--Knill theorem). The need for understanding the limits of covariant quantum error correction arises in various realms of physics including fault-tolerant quantum computation, condensed matter physics and quantum gravity. Here, we explore covariant quantum error correction with respect to continuous symmetries from the perspectives of quantum metrology and quantum resource theory, establishing solid connections between these formerly disparate fields. We prove new and powerful lower bounds on the infidelity of covariant quantum error correction, which not only extend the scope of previous no-go results but also provide a substantial improvement over existing bounds. Explicit lower bounds are derived for both erasure and depolarizing noises. We also present a type of covariant codes which nearly saturates these lower bounds.



rate research

Read More

218 - Kosuke Fukui , Akihisa Tomita , 2018
To implement fault-tolerant quantum computation with continuous variables, the Gottesman--Kitaev--Preskill (GKP) qubit has been recognized as an important technological element. We have proposed a method to reduce the required squeezing level to realize large scale quantum computation with the GKP qubit [Phys. Rev. X. {bf 8}, 021054 (2018)], harnessing the virtue of analog information in the GKP qubits. In the present work, to reduce the number of qubits required for large scale quantum computation, we propose the tracking quantum error correction, where the logical-qubit level quantum error correction is partially substituted by the single-qubit level quantum error correction. In the proposed method, the analog quantum error correction is utilized to make the performances of the single-qubit level quantum error correction almost identical to those of the logical-qubit level quantum error correction in a practical noise level. The numerical results show that the proposed tracking quantum error correction reduces the number of qubits during a quantum error correction process by the reduction rate $left{{2(n-1)times4^{l-1}-n+1}right}/({2n times 4^{l-1}})$ for $n$-cycles of the quantum error correction process using the Knills $C_{4}/C_{6}$ code with the concatenation level $l$. Hence, the proposed tracking quantum error correction has great advantage in reducing the required number of physical qubits, and will open a new way to bring up advantage of the GKP qubits in practical quantum computation.
225 - Andrew S. Fletcher 2007
Quantum error correction (QEC) is an essential concept for any quantum information processing device. Typically, QEC is designed with minimal assumptions about the noise process; this generic assumption exacts a high cost in efficiency and performance. In physical systems, errors are not likely to be arbitrary; rather we will have reasonable models for the structure of quantum decoherence. We may choose quantum error correcting codes and recovery operations that specifically target the most likely errors. We present a convex optimization method to determine the optimal (in terms of average entanglement fidelity) recovery operation for a given channel, encoding, and information source. This is solvable via a semidefinite program (SDP). We present computational algorithms to generate near-optimal recovery operations structured to begin with a projective syndrome measurement. These structured operations are more computationally scalable than the SDP required for computing the optimal; we can thus numerically analyze longer codes. Using Lagrange duality, we bound the performance of the structured recovery operations and show that they are nearly optimal in many relevant cases. We present two classes of channel-adapted quantum error correcting codes specifically designed for the amplitude damping channel. These have significantly higher rates with shorter block lengths than corresponding generic quantum error correcting codes. Both classes are stabilizer codes, and have good fidelity performance with stabilizer recovery operations. The encoding, syndrome measurement, and syndrome recovery operations can all be implemented with Clifford group operations.
Based on the group structure of a unitary Lie algebra, a scheme is provided to systematically and exhaustively generate quantum error correction codes, including the additive and nonadditive codes. The syndromes in the process of error-correction distinguished by different orthogonal vector subspaces, the coset subspaces. Moreover, the generated codes can be classified into four types with respect to the spinors in the unitary Lie algebra and a chosen initial quantum state.
278 - Ognyan Oreshkov 2013
Continuous-time quantum error correction (CTQEC) is an approach to protecting quantum information from noise in which both the noise and the error correcting operations are treated as processes that are continuous in time. This chapter investigates CTQEC based on continuous weak measurements and feedback from the point of view of the subsystem principle, which states that protected quantum information is contained in a subsystem of the Hilbert space. We study how to approach the problem of constructing CTQEC protocols by looking at the evolution of the state of the system in an encoded basis in which the subsystem containing the protected information is explicit. This point of view allows us to reduce the problem to that of protecting a known state, and to design CTQEC procedures from protocols for the protection of a single qubit. We show how previously studied CTQEC schemes with both direct and indirect feedback can be obtained from strategies for the protection of a single qubit via weak measurements and weak unitary operations. We also review results on the performance of CTQEC with direct feedback in cases of Markovian and non-Markovian decoherence, where we have shown that due to the existence of a Zeno regime in non-Markovian dynamics, the performance of CTQEC can exhibit a quadratic improvement if the time resolution of the weak error-correcting operations is high enough to reveal the non-Markovian character of the noise process.
We investigate the effects of error correction on non-local quantum coherence as a function of time, extending the study by Sainz and Bjork. We consider error correction of amplitude damping, pure phase damping and combinations of amplitude and phase damping as they affect both fidelity and quantum entanglement. Initial two-qubit entanglement is encoded in arbitrary real superpositions of both Phi-type and Psi-type Bell states. Our main focus is on the possibility of delay or prevention of ESD (early stage decoherence, or entanglement sudden death). We obtain the onset times for ESD as a function of the state-superposition mixing angle. Error correction affects entanglement and fidelity differently, and we exhibit initial entangled states for which error correction increases fidelity but decreases entanglement, and vice versa.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا