No Arabic abstract
In this paper, we propose a deep convolutional neural network-based acoustic word embedding system on code-switching query by example spoken term detection. Different from previous configurations, we combine audio data in two languages for training instead of only using one single language. We transform the acoustic features of keyword templates and searching content to fixed-dimensional vectors and calculate the distances between keyword segments and searching content segments obtained in a sliding manner. An auxiliary variability-invariant loss is also applied to training data within the same word but different speakers. This strategy is used to prevent the extractor from encoding undesired speaker- or accent-related information into the acoustic word embeddings. Experimental results show that our proposed system produces promising searching results in the code-switching test scenario. With the increased number of templates and the employment of variability-invariant loss, the searching performance is further enhanced.
Acoustic-to-Word recognition provides a straightforward solution to end-to-end speech recognition without needing external decoding, language model re-scoring or lexicon. While character-based models offer a natural solution to the out-of-vocabulary problem, word models can be simpler to decode and may also be able to directly recognize semantically meaningful units. We present effective methods to train Sequence-to-Sequence models for direct word-level recognition (and character-level recognition) and show an absolute improvement of 4.4-5.0% in Word Error Rate on the Switchboard corpus compared to prior work. In addition to these promising results, word-based models are more interpretable than character models, which have to be composed into words using a separate decoding step. We analyze the encoder hidden states and the attention behavior, and show that location-aware attention naturally represents words as a single speech-word-vector, despite spanning multiple frames in the input. We finally show that the Acoustic-to-Word model also learns to segment speech into words with a mean standard deviation of 3 frames as compared with human annotated forced-alignments for the Switchboard corpus.
Segmental models are sequence prediction models in which scores of hypotheses are based on entire variable-length segments of frames. We consider segmental models for whole-word (acoustic-to-word) speech recognition, with the feature vectors defined using vector embeddings of segments. Such models are computationally challenging as the number of paths is proportional to the vocabulary size, which can be orders of magnitude larger than when using subword units like phones. We describe an efficient approach for end-to-end whole-word segmental models, with forward-backward and Viterbi decoding performed on a GPU and a simple segment scoring function that reduces space complexity. In addition, we investigate the use of pre-training via jointly trained acoustic word embeddings (AWEs) and acoustically grounded word embeddings (AGWEs) of written word labels. We find that word error rate can be reduced by a large margin by pre-training the acoustic segment representation with AWEs, and additional (smaller) gains can be obtained by pre-training the word prediction layer with AGWEs. Our final models improve over prior A2W models.
Acoustic-to-word (A2W) models that allow direct mapping from acoustic signals to word sequences are an appealing approach to end-to-end automatic speech recognition due to their simplicity. However, prior works have shown that modelling A2W typically encounters issues of data sparsity that prevent training such a model directly. So far, pre-training initialization is the only approach proposed to deal with this issue. In this work, we propose to build a shared neural network and optimize A2W and conventional hybrid models in a multi-task manner. Our results show that training an A2W model is much more stable with our multi-task model without pre-training initialization, and results in a significant improvement compared to a baseline model. Experiments also reveal that the performance of a hybrid acoustic model can be further improved when jointly training with a sequence-level optimization criterion such as acoustic-to-word.
Whereas conventional spoken language understanding (SLU) systems map speech to text, and then text to intent, end-to-end SLU systems map speech directly to intent through a single trainable model. Achieving high accuracy with these end-to-end models without a large amount of training data is difficult. We propose a method to reduce the data requirements of end-to-end SLU in which the model is first pre-trained to predict words and phonemes, thus learning good features for SLU. We introduce a new SLU dataset, Fluent Speech Commands, and show that our method improves performance both when the full dataset is used for training and when only a small subset is used. We also describe preliminary experiments to gauge the models ability to generalize to new phrases not heard during training.
There is a recent trend in machine learning to increase model quality by growing models to sizes previously thought to be unreasonable. Recent work has shown that autoregressive generative models with cross-entropy objective functions exhibit smooth power-law relationships, or scaling laws, that predict model quality from model size, training set size, and the available compute budget. These scaling laws allow one to choose nearly optimal hyper-parameters given constraints on available training data, model parameter count, or training computation budget. In this paper, we demonstrate that acoustic models trained with an auto-predictive coding loss behave as if they are subject to similar scaling laws. We extend previous work to jointly predict loss due to model size, to training set size, and to the inherent irreducible loss of the task. We find that the scaling laws accurately match model performance over two orders of magnitude in both model size and training set size, and make predictions about the limits of model performance.