An Output Containment Approach to Cooperative Control of Multiple Unmanned and Manned Vehicles


Abstract in English

This paper investigates the cooperative control of multiple unmanned and manned vehicles via an output containment control approach for heterogeneous discrete-time multiagent systems. The unmanned vehicles act as leading vehicles to guide the manned vehicles, i.e., following vehicles. The objective is to develop a distributed output feedback control law such that the output of the following vehicles can converge to the convex hull spanned by the output of the leading vehicles exponentially. The convex hull formed by the output of the leading vehicles and the system matrix of leading vehicles are estimated via a distributed containment observer. Based on this observer, a distributed dynamic output feedback control protocol is first devised for heterogeneous discrete-time multi-agent systems using only neighboring relative output information. The proof is depicted by showing certain output containment errors converge to zero exponentially, which indicates the containment control objective is well achieved. A distributed dynamic state-feedback control law is deduced as a special case of the output feedback control. Finally, numerical simulations with application to cooperative control of multiple vehicles validate the effectiveness and the computational feasibility of the proposed control protocols.

Download