Do you want to publish a course? Click here

Characterising DNA T-motifs by Simulation and Experiment

108   0   0.0 ( 0 )
 Added by Behnam Najafi
 Publication date 2020
  fields Biology Physics
and research's language is English




Ask ChatGPT about the research

The success of DNA nanotechnology has been driven by the discovery of novel structural motifs with a wide range of shapes and uses. We present a comprehensive study of the T-motif, a 3-armed, planar, right-angled junction that has been used in the self-assembly of DNA polyhedra and periodic structures. The motif is formed through the interaction of a bulge loop in one duplex and a sticky end of another. The polarity of the sticky end has significant consequences for the thermodynamic and geometrical properties of the T-motif: different polarities create junctions spanning different grooves of the duplex. We compare experimental binding strengths with predictions of oxDNA, a coarse-grained model of DNA, for various loop sizes. We find that, although both sticky-end polarities can create stable junctions, junctions resulting from 5$$ sticky ends are stable over a wider range of bulge loop sizes. We highlight the importance of possible coaxial stacking interactions within the motif and investigate how each coaxial stacking interaction stabilises the structure and favours a particular geometry.



rate research

Read More

We introduce the SPlit-and-conQueR (SPQR) model, a coarse-grained representation of RNA designed for structure prediction and refinement. In our approach, the representation of a nucleotide consists of a point particle for the phosphate group and an anisotropic particle for the nucleoside. The interactions are, in principle, knowledge-based potentials inspired by the ESCORE function, a base-centered scoring function. However, a special treatment is given to base-pairing interactions and certain geometrical conformations which are lost in a raw knowledge-base model. This results in a representation able to describe planar canonical and non-canonical base pairs and base-phosphate interactions and to distinguish sugar puckers and glycosidic torsion conformations. The model is applied to the folding of several structures, including duplexes with internal loops of non-canonical base pairs, tetraloops, junctions and a pseudoknot. For the majority of these systems, experimental structures are correctly predicted at the level of individual contacts. We also propose a method for efficiently reintroducing atomistic detail from the coarse-grained representation.
We study a protein-DNA target search model with explicit DNA dynamics applicable to in vitro experiments. We show that the DNA dynamics plays a crucial role for the effectiveness of protein jumps between sites distant along the DNA contour but close in 3D space. A strongly binding protein that searches by 1D sliding and jumping alone, explores the search space less redundantly when the DNA dynamics is fast on the timescale of protein jumps than in the opposite frozen DNA limit. We characterize the crossover between these limits using simulations and scaling theory. We also rationalize the slow exploration in the frozen limit as a subtle interplay between long jumps and long trapping times of the protein in islands within random DNA configurations in solution.
Much of the complexity observed in gene regulation originates from cooperative protein-DNA binding. While studies of the target search of proteins for their specific binding sites on the DNA have revealed design principles for the quantitative characteristics of protein-DNA interactions, no such principles are known for the cooperative interactions between DNA-binding proteins. We consider a simple theoretical model for two interacting transcription factor (TF) species, searching for and binding to two adjacent target sites hidden in the genomic background. We study the kinetic competition of a dimer search pathway and a monomer search pathway, as well as the steady-state regulation function mediated by the two TFs over a broad range of TF-TF interaction strengths. Using a transcriptional AND-logic as exemplary functional context, we identify the functionally desirable regime for the interaction. We find that both weak and very strong TF-TF interactions are favorable, albeit with different characteristics. However, there is also an unfavorable regime of intermediate interactions where the genetic response is prohibitively slow.
165 - Daniel M. Zuckerman 2010
Equilibrium sampling of biomolecules remains an unmet challenge after more than 30 years of atomistic simulation. Efforts to enhance sampling capability, which are reviewed here, range from the development of new algorithms to parallelization to novel uses of hardware. Special focus is placed on classifying algorithms -- most of which are underpinned by a few key ideas -- in order to understand their fundamental strengths and limitations. Although algorithms have proliferated, progress resulting from novel hardware use appears to be more clear-cut than from algorithms alone, partly due to the lack of widely used sampling measures.
Electrical forces are the background of all the interactions occurring in biochemical systems. From here and by using a combination of ab-initio and ad-hoc models, we introduce the first description of electric field profiles with intrabond resolution to support a characterization of single bond forces attending to its electrical origin. This fundamental issue has eluded a physical description so far. Our method is applied to describe hydrogen bonds (HB) in DNA base pairs. Numerical results reveal that base pairs in DNA could be equivalent considering HB strength contributions, which challenges previous interpretations of thermodynamic properties of DNA based on the assumption that Adenine/Thymine pairs are weaker than Guanine/Cytosine pairs due to the sole difference in the number of HB. Thus, our methodology provides solid foundations to support the development of extended models intended to go deeper into the molecular mechanisms of DNA functioning.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا