Necessary and sufficient conditions are presented for several families of planar curves to form a set of stable sampling for the Bernstein space $mathcal{B}_{Omega}$ over a convex set $Omega subset mathbb{R}^2$. These conditions essentially describe the mobile sampling property of these families for the Paley-Wiener spaces $mathcal{PW}^p_{Omega},1leq p<infty$.
We discuss sampling constants for dominating sets in Bergman spaces. Our method is based on a Remez-type inequality by Andrievskii and Ruscheweyh. We also comment on extensions of the method to other spaces such as Fock and Paley-Wiener spaces.
In this paper, we study the behavior of the singular values of Hankel operators on weighted Bergman spaces $A^2_{omega _varphi}$, where $omega _varphi= e^{-varphi}$ and $varphi$ is a subharmonic function. We consider compact Hankel operators $H_{overline {phi}}$, with anti-analytic symbols ${overline {phi}}$, and give estimates of the trace of $h(|H_{overline phi}|)$ for any convex function $h$. This allows us to give asymptotic estimates of the singular values $(s_n(H_{overline {phi}}))_n$ in terms of decreasing rearrangement of $|phi |/sqrt{Delta varphi}$. For the radial weights, we first prove that the critical decay of $(s_n(H_{overline {phi}}))_n$ is achieved by $(s_n (H_{overline{z}}))_n$. Namely, we establish that if $s_n(H_{overline {phi}})= o (s_n(H_{overline {z}}))$, then $H_{overline {phi}} = 0$. Then, we show that if $Delta varphi (z) asymp frac{1}{(1-|z|^2)^{2+beta}}$ with $beta geq 0$, then $s_n(H_{overline {phi}}) = O(s_n(H_{overline {z}}))$ if and only if $phi $ belongs to the Hardy space $H^p$, where $p= frac{2(1+beta)}{2+beta}$. Finally, we compute the asymptotics of $s_n(H_{overline {phi}})$ whenever $ phi in H^{p }$.
We give in this paper some equivalent definitions of the so called $rho$-Carleson measures when $rho(t)=(log(4/t))^p(loglog(e^4/t))^q$, $0le p,q<infty$. As applications, we characterize the pointwise multipliers on $LMOA(mathbb S^n)$ and from this space to $BMOA(mathbb S^n)$. Boundedness of the Ces`aro type integral operators on $LMOA(mathbb S^n)$ and from $LMOA(mathbb S^n)$ to $BMOA(mathbb S^n)$ is considered as well.
A simple proof of Ramanujans formula for the Fourier transform of the square of the modulus of the Gamma function restricted to a vertical line in the right half-plane is given. The result is extended to vertical lines in the left half-plane by solving an inhomogeneous ODE. We then use it to calculate the jump across the imaginary axis.