Do you want to publish a course? Click here

Long-Time Correlations in Single-Neutron Interferometry Data

81   0   0.0 ( 0 )
 Added by Hans De Raedt
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a detailed analysis of the time series of time-stamped neutron counts obtained by single-neutron interferometry. The neutron counting statistics display the usual Poissonian behavior, but the variance of the neutron counts does not. Instead, the variance is found to exhibit a dependence on the phase-shifter setting which can be explained by a probabilistic model that accounts for fluctuations of the phase shift. The time series of the detection events exhibit long-time correlations with amplitudes that also depend on the phase-shifter setting. These correlations appear as damped oscillations with a period of about 2.8 s. By simulation, we show that the correlations of the time differences observed in the experiment can be reproduced by assuming that, for a fixed setting of the phase shifter, the phase shift experienced by the neutrons varies periodically in time with a period of 2.8 s. The same simulations also reproduce the behavior of the variance. Our analysis of the experimental data suggests that time-stamped data of singleparticle interference experiments may exhibit transient features that require a description in terms of non-stationary processes, going beyond the standard quantum model of independent random events.

rate research

Read More

Time domain interferometry is a promising method to characterizes spatial and temporal correlations at x-ray energies, via the so-called intermediate scattering function and the related dynamical couple correlations. However, so far, it has only been analyzed for classical target systems. Here, we provide a quantum analysis, and suggest a scheme which allows to access quantum dynamical correlations. We further show how TDI can be used to exclude classical models for the target dynamics, and illustrate our results using a single particle in a double well potential.
Time-domain interferometry (TDI) is a method to probe space-time correlations among particles in condensed matter systems. Applying TDI to quantum systems raises the general question, whether two-time correlations can be reliably measured without adverse impact of the measurement backaction onto the dynamics of the system. Here, we show that a recently developed quantum version of TDI (QTDI) indeed can access the full quantum-mechanical two-time correlations without backaction. We further generalize QTDI to weak classical continuous-mode coherent input states, alleviating the need for single-photon input fields. Finally, we interpret our results by splitting the space-time correlations into two parts. While the first one is associated to projective measurements and thus insensitive to backaction, we identify the second contribution as arising from the coherence properties of the state of the probed target system, such that it is perturbed or even destroyed by measurements on the system.
A zero-area four-blade perfect crystal neutron interferometer (NI) possess a decoherence-free subspace (DFS) for low-frequency mechanical vibrations and thus is easier to site. %has the potential to broaden the application of crystal-based neutron interferometry to a higher number of neutron sources. However, unlike the standard three-blade Mach-Zehnder NI the ideal contrast of this four-blade NI geometry is less than one. By applying a recently introduced quantum information model for dynamical diffraction we show that the contrast for the four-blade DFS NI can be increased by offsetting the focusing condition. The contrast optimization leads to an NI geometry where the distances between the centers of the blades are equidistant. An experiment is proposed to verify the increase in contrast.
We develop an operator-based description of two types of multimode-entangled single-neutron quantum optical devices: Wollaston prisms and radio-frequency spin flippers in inclined magnetic field gradients. This treatment is similar to the approach used in quantum optics, and is convenient for the analysis of quantum contextuality measurements in certain types of neutron interferometers. We describe operationally the way multimode-entangled single-neutron states evolve in these devices, and provide expressions for the associated operators describing the dynamics, in the limit in which the neutron state space is approximated by a finite tensor product of distinguishable subsystems. We design entangled-neutron interferometers to measure entanglement witnesses for the Clauser, Horne, Shimony and Holt, and Mermin inequalities, and compare the theoretical predictions with recent experimental results. We present the generalization of these expressions to $n$ entangled distinguishable subsystems, which could become relevant in the future if it becomes possible to add neutron orbital angular momentum to the experimentally-accessible list of entangled modes. We view this work as a necessary first step towards a theoretical description of entangled neutron scattering from strongly entangled matter, and we explain why it should be possible to formulate a useful generalization of the usual Van Hove linear response theory for this case. We also briefly describe some other scientific extensions and applications which can benefit from interferometric measurements using the types of single-neutron multimode entanglement described by this analysis.
It is a commonly stated that the acceleration sensitivity of an atom interferometer is proportional to the space-time area enclosed between the two interfering arms. Here we derive the interferometric phase shift for an extensive class of interferometers, and explore the circumstances in which only the inertial terms contribute. We then analyse various configurations in light of this geometric interpretation of the interferometric phase shift.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا