No Arabic abstract
Background: Resonance scattering has been extensively used to study the structure of exotic, neutron-deficient nuclei. Extension of the resonance scattering technique to neutron-rich nuclei was suggested more than 20 years ago. This development is based on the isospin conservation law. In spite of broad field of the application, it has never gained a wide-spread acceptance. Purpose: To benchmark the experimental approach to study the structure of exotic neutron-rich nuclei through resonance scattering on a proton target. Method: The excitation function for p+8Li resonance scattering is measured using a thick target by recording coincidence between light and heavy recoils, populating T=3/2 isobaric analog states (IAS) in 9Be. Results: A good fit of the 8Li(p,p)8Li resonance elastic scattering excitation function was obtained using previously tentatively known 5/2- T=3/2 state at 18.65 MeV in 9Be and a new broad T=3/2 s-wave state - the 5/2+ at 18.5 MeV. These results fit the expected iso-mirror properties for the T=3/2 A=9 iso-quartet. Conclusions: Our analysis confirmed isospin as a good quantum number for the investigated highly excited T=3/2 states and demonstrated that studying the structure of neutron-rich exotic nuclei through IAS is a promising approach.
Decay via proton emission of isobaric analog states (IASs) in $^{91}{Nb}$ was studied using the $^{90}{Zr}(alpha,t)$ reaction at $E_alpha$=180 MeV. This study provides information about the damping mechanism of these states. Decay to the ground state and low-lying phonon states in $^{90}{Zr}$ was observed. The experimental data are compared with theoretical predictions wherein the IAS `single-particle proton escape widths are calculated in a continuum RPA approach. The branching ratios for decay to the phonon states are explained using a simple model.
Isobaric multiplets can be used to provide reliable mass predictions through the Isobaric Multiplet Mass Equation (IMME). Isobaric analogue states (IAS) for isospin multiplets from $T=1/2$ to $T=3$ have been studied within the 2012 Atomic Mass Evaluation (Ame2012). Each IAS established from published experimental reaction data has been expressed in the form of a primary reaction $Q$-value, and if necessary, has been recalibrated. The evaluated IAS masses are provided here along with the associated IMME coefficients. Quadratic and higher order forms of the IMME have been considered, and global trends have been extracted. Particular nuclides, requiring experimental investigation, have been identified and discussed. This dataset is the most precise and extensive set of evaluated IAS to date.
Angular distributions for the elastic scattering of 8Li on 9Be and the neutron transfer reactions 9Be(8Li,7Li)10Be and 9Be(8Li,9Li)8Be have been measured with a 27 MeV 8Li radioactive nuclear beam. Spectroscopic factors for 8Li|n=9Li and 7Li|n=8Li bound systems were obtained from the comparison between the experimental differential cross section and finite-range DWBA calculations with the code FRESCO. The spectroscopic factors obtained are compared to shell model calculations and to other experimental values from (d,p) reactions. Using the present values for the spectroscopic factor, cross sections for the direct neutron-capture reactions 7Li(n,g)8Li and 8Li(n,g)9Li were calculated in the framework of a potential model.
The observed mass excesses of analog nuclear states with the same mass number $A$ and isospin $T$ can be used to test the isobaric multiplet mass equation (IMME), which has, in most cases, been validated to a high degree of precision. A recent measurement [Kankainen et al., Phys. Rev. C 93 041304(R) (2016)] of the ground-state mass of $^{31}$Cl led to a substantial breakdown of the IMME for the lowest $A = 31, T = 3/2$ quartet. The second-lowest $A = 31, T = 3/2$ quartet is not complete, due to uncertainties associated with the identity of the $^{31}$S member state. Using a fast $^{31}$Cl beam implanted into a plastic scintillator and a high-purity Ge $gamma$-ray detection array, $gamma$ rays from the $^{31}$Cl$(betagamma)$$^{31}$S sequence were measured. Shell-model calculations using USDB and the recently-developed USDE interactions were performed for comparison. Isospin mixing between the $^{31}$S isobaric analog state (IAS) at 6279.0(6) keV and a nearby state at 6390.2(7) keV was observed. The second $T = 3/2$ state in $^{31}$S was observed at $E_x = 7050.0(8)$ keV. Isospin mixing in $^{31}$S does not by itself explain the IMME breakdown in the lowest quartet, but it likely points to similar isospin mixing in the mirror nucleus $^{31}$P, which would result in a perturbation of the $^{31}$P IAS energy. USDB and USDE calculations both predict candidate $^{31}$P states responsible for the mixing in the energy region slightly above $E_x = 6400$ keV. The second quartet has been completed thanks to the identification of the second $^{31}$S $T = 3/2$ state, and the IMME is validated in this quartet.
Recent high-precision mass measurements and shell model calculations~[Phys. Rev. Lett. {bf 108}, 212501 (2012)] have challenged a longstanding explanation for the requirement of a cubic isobaric multiplet mass equation for the lowest $A = 9$ isospin quartet. The conclusions relied upon the choice of the excitation energy for the second $T = 3/2$ state in $^9$B, which had two conflicting measurements prior to this work. We remeasured the energy of the state using the $^9{rm Be}(^3{rm He},t)$ reaction and significantly disagree with the most recent measurement. Our result supports the contention that continuum coupling in the most proton-rich member of the quartet is not the predominant reason for the large cubic term required for $A = 9$ nuclei.