No Arabic abstract
We present the results of deep Chandra and XMM-Newton observations of a complex merging galaxy cluster Abell 2256 (A2256) that hosts a spectacular radio relic (RR). The temperature and metallicity maps show clear evidence of a merger between the western subcluster (SC) and the primary cluster (PC). We detect five X-ray surface brightness edges. Three of them near the cluster center are cold fronts (CFs): CF1 is associated with the infalling SC; CF2 is located in the east of the PC; and CF3 is to the west of the PC core. The other two edges at cluster outskirts are shock fronts (SFs): SF1 near the RR in the NW has Mach numbers derived from the temperature and the density jumps, respectively, of $M_T=1.62pm0.12$ and $M_rho=1.23pm0.06$; SF2 in the SE has $M_T=1.54pm0.05$ and $M_rho=1.16pm0.13$. In the region of the RR, there is no evidence for the correlation between X-ray and radio substructures, from which we estimate an upper limit for the inverse-Compton emission, and therefore set a lower limit on the magnetic field ($sim$ 450 kpc from PC center) of $B>1.0 mu$G for a single power-law electron spectrum or $B>0.4 mu$G for a broken power-law electron spectrum. We propose a merger scenario including a PC, an SC, and a group. Our merger scenario accounts for the X-ray edges, diffuse radio features, and galaxy kinematics, as well as projection effects.
A number of merging galaxy clusters shows the presence of shocks and cold fronts, i.e. sharp discontinuities in surface brightness and temperature. The observation of these features requires an X-ray telescope with high spatial resolution like Chandra, and allows to study important aspects concerning the physics of the intra-cluster medium (ICM), such as its thermal conduction and viscosity, as well as to provide information on the physical conditions leading to the acceleration of cosmic rays and magnetic field amplification in the cluster environment. In this work we search for new discontinuities in 15 merging and massive clusters observed with Chandra by using different imaging and spectral techniques of X-ray observations. Our analysis led to the discovery of 22 edges: six shocks, eight cold fronts and eight with uncertain origin. All the six shocks detected have $mathcal{M} < 2$ derived from density and temperature jumps. This work contributed to increase the number of discontinuities detected in clusters and shows the potential of combining diverse approaches aimed to identify edges in the ICM. A radio follow-up of the shocks discovered in this paper will be useful to study the connection between weak shocks and radio relics.
In this paper we discuss the radio continuum and X-ray properties of the so-far poorly studied Galactic supernova remnant (SNR) G5.9+3.1. We present the radio spectral energy distribution (SED) of the Galactic SNR G5.9+3.1 obtained with the Murchison Widefield Array (MWA). Combining these new observations with the surveys at other radio continuum frequencies, we discuss the integrated radio continuum spectrum of this particular remnant. We have also analyzed an archival XMM-Newton observation, which represents the first detection of X-ray emission from this remnant. The SNR SED is very well explained by a simple power-law relation. The synchrotron radio spectral index of G5.9+3.1, is estimated to be 0.42$pm$0.03 and the integrated flux density at 1GHz to be around 2.7Jy. Furthermore, we propose that the identified point radio source, located centrally inside the SNR shell, is most probably a compact remnant of the supernova explosion. The shell-like X-ray morphology of G5.9+3.1 as revealed by XMM-Newton broadly matches the spatial distribution of the radio emission, where the radio-bright eastern and western rims are also readily detected in the X-ray while the radio-weak northern and southern rims are weak or absent in the X-ray. Extracted MOS1+MOS2+PN spectra from the whole SNR as well as the north, east, and west rims of the SNR are fit successfully with an optically thin thermal plasma model in collisional ionization equilibrium with a column density N_H~0.80x$10^{22}$ cm$^{-2}$ and fitted temperatures spanning the range kT~0.14-0.23keV for all of the regions. The derived electron number densities n_e for the whole SNR and the rims are also roughly comparable (ranging from ~$0.20f^{-1/2}$ cm$^{-3}$ to ~$0.40f^{-1/2}$ cm$^{-3}$, where f is the volume filling factor). We also estimate the swept-up mass of the X-ray emitting plasma associated with G5.9+3.1 to be ~$46f^{-1/2}M_{odot}$.
Cold Fronts and shocks are hallmarks of the complex intra-cluster medium (ICM) in galaxy clusters. They are thought to occur due to gas motions within the ICM and are often attributed to galaxy mergers within the cluster. Using hydro-cosmological simulations of clusters of galaxies, we show that collisions of inflowing gas streams, seen to penetrate to the very centre of about half the clusters, offer an additional mechanism for the formation of shocks and cold fronts in cluster cores. Unlike episodic merger events, a gas stream inflow persists over a period of several Gyrs and it could generate a particular pattern of multiple cold fronts and shocks.
Table of contents (abridged): COLD FRONTS Origin and evolution of merger cold fronts Cold fronts in cluster cool cores . . . Simulations of gas sloshing. Origin of density discontinuity. . . . Effect of sloshing on cluster mass estimates and cooling flows. Zoology of cold fronts COLD FRONTS AS EXPERIMENTAL TOOL Velocities of gas flows Thermal conduction and diffusion across cold fronts Stability of cold fronts . . . Rayleigh-Taylor instability. Kelvin-Helmholtz instability. Possible future measurements using cold fronts . . . Plasma depletion layer and magnetic field. Effective viscosity of ICM. SHOCK FRONTS AS EXPERIMENTAL TOOL Cluster merger shocks Mach number determination Front width Mach cone and reverse shock? Test of electron-ion equilibrium . . . Comparison with other astrophysical plasmas Shocks and cluster cosmic ray population . . . Shock acceleration. Compression of fossil electrons. . . . Yet another method to measure intracluster magnetic field.
We report on XMM-Newton and optical results for 6 cataclysmic variables that were selected from Sloan Digital Sky Survey spectra because they showed strong HeII emission lines, indicative of being candidates for containing white dwarfs with strong magnetic fields. While high X-ray background rates prevented optimum results, we are able to confirm SDSSJ233325.92+152222.1 as an intermediate polar from its strong pulse signature at 21 min and its obscured hard X-ray spectrum. Ground-based circular polarization and photometric observations were also able to confirm SDSSJ142256.31-022108.1 as a polar with a period near 4 hr. Photometry of SDSSJ083751.00+383012.5 and SDSSJ093214.82+495054.7 solidifies the orbital period of the former as 3.18 hrs and confirms the latter as a high inclination system with deep eclipses.