No Arabic abstract
Let $D$ be an integral domain. A nonzero nonunit $a$ of $D$ is called a valuation element if there is a valuation overring $V$ of $D$ such that $aVcap D=aD$. We say that $D$ is a valuation factorization domain (VFD) if each nonzero nonunit of $D$ can be written as a finite product of valuation elements. In this paper, we study some ring-theoretic properties of VFDs. Among other things, we show that (i) a VFD $D$ is Schreier, and hence ${rm Cl}_t(D)={0}$, (ii) if $D$ is a P$v$MD, then $D$ is a VFD if and only if $D$ is a weakly Matlis GCD-domain, if and only if $D[X]$, the polynomial ring over $D$, is a VFD and (iii) a VFD $D$ is a weakly factorial GCD-domain if and only if $D$ is archimedean. We also study a unique factorization property of VFDs.
We give a short proof -- not relying on ideal classes or the geometry of numbers -- of a known criterion for quadratic orders to possess unique factorization.
We show that every subsymmetric Schauder basis $(e_j)$ of a Banach space $X$ has the factorization property, i.e. $I_X$ factors through every bounded operator $Tcolon Xto X$ with a $delta$-large diagonal (that is $inf_j |langle Te_j, e_j^*rangle| geq delta > 0$, where the $(e_j^*)$ are the biorthogonal functionals to $(e_j)$). Even if $X$ is a non-separable dual space with a subsymmetric weak$^*$ Schauder basis $(e_j)$, we prove that if $(e_j)$ is non-$ell^1$-splicing (there is no disjointly supported $ell^1$-sequence in $X$), then $(e_j)$ has the factorization property. The same is true for $ell^p$-direct sums of such Banach spaces for all $1leq pleq infty$. Moreover, we find a condition for an unconditional basis $(e_j)_{j=1}^n$ of a Banach space $X_n$ in terms of the quantities $|e_1+ldots+e_n|$ and $|e_1^*+ldots+e_n^*|$ under which an operator $Tcolon X_nto X_n$ with $delta$-large diagonal can be inverted when restricted to $X_sigma = [e_j : jinsigma]$ for a large set $sigmasubset {1,ldots,n}$ (restricted invertibility of $T$; see Bourgain and Tzafriri [Israel J. Math. 1987, London Math. Soc. Lecture Note Ser. 1989). We then apply this result to subsymmetric bases to obtain that operators $T$ with a $delta$-large diagonal defined on any space $X_n$ with a subsymmetric basis $(e_j)$ can be inverted on $X_sigma$ for some $sigma$ with $|sigma|geq c n^{1/4}$.
In this paper we consider the following problem: Let $X_k$, be a Banach space with a normalized basis $(e_{(k,j)})_j$, whose biorthogonals are denoted by $(e_{(k,j)}^*)_j$, for $kinmathbb{N}$, let $Z=ell^infty(X_k:kinmathbb{N})$ be their $ell^infty$-sum, and let $T:Zto Z$ be a bounded linear operator, with a large diagonal, i.e. $$inf_{k,j} big|e^*_{(k,j)}(T(e_{(k,j)})big|>0.$$ Under which condition does the identity on $Z$ factor through $T$? The purpose of this paper is to formulate general conditions for which the answer is positive.
In this paper we investigate the concept of radical factorization with respect to finitary ideal systems of cancellative monoids. We present new characterizations for r-almost Dedekind r-SP-monoids and provide specific descriptions of t-almost Dedekind t-SP-monoids and w-SP-monoids. We show that a monoid is a w-SP-monoid if and only if the radical of every nontrivial principal ideal is t-invertible. We characterize when the monoid ring is a w-SP-domain and describe when the *-Nagata ring is an SP-domain for a star operation * of finite type.
In multi-terminal communication systems, signals carrying messages meant for different destinations are often observed together at any given destination receiver. Han and Kobayashi (1981) proposed a receiving strategy which performs a joint unique decoding of messages of interest along with a subset of messages which are not of interest. It is now well-known that this provides an achievable region which is, in general, larger than if the receiver treats all messages not of interest as noise. Nair and El Gamal (2009) and Chong, Motani, Garg, and El Gamal (2008) independently proposed a generalization called indirect or non-unique decoding where the receiver uses the codebook structure of the messages to uniquely decode only its messages of interest. Non-unique decoding has since been used in various scenarios. The main result in this paper is to provide an interpretation and a systematic proof technique for why non-unique decoding, in all known cases where it has been employed, can be replaced by a particularly designed joint unique decoding strategy, without any penalty from a rate region viewpoint.