Do you want to publish a course? Click here

BeepTrace: Blockchain-enabled Privacy-preserving Contact Tracing for COVID-19 Pandemic and Beyond

88   0   0.0 ( 0 )
 Added by Hao Xu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The outbreak of COVID-19 pandemic has exposed an urgent need for effective contact tracing solutions through mobile phone applications to prevent the infection from spreading further. However, due to the nature of contact tracing, public concern on privacy issues has been a bottleneck to the existing solutions, which is significantly affecting the uptake of contact tracing applications across the globe. In this paper, we present a blockchain-enabled privacy-preserving contact tracing scheme: BeepTrace, where we propose to adopt blockchain bridging the user/patient and the authorized solvers to desensitize the user ID and location information. Compared with recently proposed contract tracing solutions, our approach shows higher security and privacy with the additional advantages of being battery friendly and globally accessible. Results show viability in terms of the required resource at both server and mobile phone perspectives. Through breaking the privacy concerns of the public, the proposed BeepTrace solution can provide a timely framework for authorities, companies, software developers and researchers to fast develop and deploy effective digital contact tracing applications, to conquer COVID-19 pandemic soon. Meanwhile, the open initiative of BeepTrace allows worldwide collaborations, integrate existing tracing and positioning solutions with the help of blockchain technology.



rate research

Read More

In this paper, we propose a new privacy-preserving, automated contact tracing system, ACOUSTIC-TURF, to fight COVID-19 using acoustic signals sent from ubiquitous mobile devices. At a high level, ACOUSTIC-TURF adaptively broadcasts inaudible ultrasonic signals with randomly generated IDs in the vicinity. Simultaneously, the system receives other ultrasonic signals sent from nearby (e.g., 6 feet) users. In such a system, individual user IDs are not disclosed to others and the system can accurately detect encounters in physical proximity with 6-foot granularity. We have implemented a prototype of ACOUSTIC-TURF on Android and evaluated its performance in terms of acoustic-signal-based encounter detection accuracy and power consumption at different ranges and under various occlusion scenarios. Experimental results show that ACOUSTIC-TURF can detect multiple contacts within a 6-foot range for mobile phones placed in pockets and outside pockets. Furthermore, our acoustic-signal-based system achieves greater precision than wireless-signal-based approaches when contact tracing is performed through walls. ACOUSTIC-TURF correctly determines that people on opposite sides of a wall are not in contact with one another, whereas the Bluetooth-based approaches detect nonexistent contacts among them.
Recently, as a consequence of the COVID-19 pandemic, dependence on Contact Tracing (CT) models has significantly increased to prevent spread of this highly contagious virus and be prepared for the potential future ones. Since the spreading probability of the novel coronavirus in indoor environments is much higher than that of the outdoors, there is an urgent and unmet quest to develop/design efficient, autonomous, trustworthy, and secure indoor CT solutions. Despite such an urgency, this field is still in its infancy. The paper addresses this gap and proposes the Trustworthy Blockchain-enabled system for Indoor Contact Tracing (TB-ICT) framework. The TB-ICT framework is proposed to protect privacy and integrity of the underlying CT data from unauthorized access. More specifically, it is a fully distributed and innovative blockchain platform exploiting the proposed dynamic Proof of Work (dPoW) credit-based consensus algorithm coupled with Randomized Hash Window (W-Hash) and dynamic Proof of Credit (dPoC) mechanisms to differentiate between honest and dishonest nodes. The TB-ICT not only provides a decentralization in data replication but also quantifies the nodes behavior based on its underlying credit-based mechanism. For achieving high localization performance, we capitalize on availability of Internet of Things (IoT) indoor localization infrastructures, and develop a data driven localization model based on Bluetooth Low Energy (BLE) sensor measurements. The simulation results show that the proposed TB-ICT prevents the COVID-19 from spreading by implementation of a highly accurate contact tracing model while improving the users privacy and security.
Activity-tracking applications and location-based services using short-range communication (SRC) techniques have been abruptly demanded in the COVID-19 pandemic, especially for automated contact tracing. The attention from both public and policy keeps raising on related practical problems, including textit{1) how to protect data security and location privacy? 2) how to efficiently and dynamically deploy SRC Internet of Thing (IoT) witnesses to monitor large areas?} To answer these questions, in this paper, we propose a decentralized and permissionless blockchain protocol, named textit{Bychain}. Specifically, 1) a privacy-preserving SRC protocol for activity-tracking and corresponding generalized block structure is developed, by connecting an interactive zero-knowledge proof protocol and the key escrow mechanism. As a result, connections between personal identity and the ownership of on-chain location information are decoupled. Meanwhile, the owner of the on-chain location data can still claim its ownership without revealing the private key to anyone else. 2) An artificial potential field-based incentive allocation mechanism is proposed to incentivize IoT witnesses to pursue the maximum monitoring coverage deployment. We implemented and evaluated the proposed blockchain protocol in the real-world using the Bluetooth 5.0. The storage, CPU utilization, power consumption, time delay, and security of each procedure and performance of activities are analyzed. The experiment and security analysis is shown to provide a real-world performance evaluation.
How to contain the spread of the COVID-19 virus is a major concern for most countries. As the situation continues to change, various countries are making efforts to reopen their economies by lifting some restrictions and enforcing new measures to prevent the spread. In this work, we review some approaches that have been adopted to contain the COVID-19 virus such as contact tracing, clusters identification, movement restrictions, and status validation. Specifically, we classify available techniques based on some characteristics such as technology, architecture, trade-offs (privacy vs utility), and the phase of adoption. We present a novel approach for evaluating privacy using both qualitative and quantitative measures of privacy-utility assessment of contact tracing applications. In this new method, we classify utility at three (3) distinct levels: no privacy, 100% privacy, and at k where k is set by the system providing the utility or privacy.
65 - Lucy Simko 2020
There is growing interest in technology-enabled contact tracing, the process of identifying potentially infected COVID-19 patients by notifying all recent contacts of an infected person. Governments, technology companies, and research groups alike recognize the potential for smartphones, IoT devices, and wearable technology to automatically track close contacts and identify prior contacts in the event of an individuals positive test. However, there is currently significant public discussion about the tensions between effective technology-based contact tracing and the privacy of individuals. To inform this discussion, we present the results of a sequence of online surveys focused on contact tracing and privacy, each with 100 participants. Our first surveys were on April 1 and 3, and we report primarily on those first two surveys, though we present initial findings from later survey dates as well. Our results present the diversity of public opinion and can inform the public discussion on whether and how to leverage technology to reduce the spread of COVID-19. We are continuing to conduct longitudinal measurements, and will update this report over time; citations to this version of the report should reference Report Version 1.0, May 8, 2020. NOTE: As of December 4, 2020, this report has been superseded by Report Version 2.0, found at arXiv:2012.01553. Please read and cite Report Version 2.0 instead.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا