No Arabic abstract
Selectivity estimation aims at estimating the number of database objects that satisfy a selection criterion. Answering this problem accurately and efficiently is essential to many applications, such as density estimation, outlier detection, query optimization, and data integration. The estimation problem is especially challenging for large-scale high-dimensional data due to the curse of dimensionality, the large variance of selectivity across different queries, and the need to make the estimator consistent (i.e., the selectivity is non-decreasing in the threshold). We propose a new deep learning-based model that learns a query-dependent piecewise linear function as selectivity estimator, which is flexible to fit the selectivity curve of any distance function and query object, while guaranteeing that the output is non-decreasing in the threshold. To improve the accuracy for large datasets, we propose to partition the dataset into multiple disjoint subsets and build a local model on each of them. We perform experiments on real datasets and show that the proposed model consistently outperforms state-of-the-art models in accuracy in an efficient way and is useful for real applications.
Cardinality estimation is a fundamental problem in database systems. To capture the rich joint data distributions of a relational table, most of the existing work either uses data as unsupervised information or uses query workload as supervised information. Very little work has been done to use both types of information, and cannot fully make use of both types of information to learn the joint data distribution. In this work, we aim to close the gap between data-driven and query-driven methods by proposing a new unified deep autoregressive model, UAE, that learns the joint data distribution from both the data and query workload. First, to enable using the supervised query information in the deep autoregressive model, we develop differentiable progressive sampling using the Gumbel-Softmax trick. Second, UAE is able to utilize both types of information to learn the joint data distribution in a single model. Comprehensive experimental results demonstrate that UAE achieves single-digit multiplicative error at tail, better accuracies over state-of-the-art methods, and is both space and time efficient.
Filtering data based on predicates is one of the most fundamental operations for any modern data warehouse. Techniques to accelerate the execution of filter expressions include clustered indexes, specialized sort orders (e.g., Z-order), multi-dimensional indexes, and, for high selectivity queries, secondary indexes. However, these schemes are hard to tune and their performance is inconsistent. Recent work on learned multi-dimensional indexes has introduced the idea of automatically optimizing an index for a particular dataset and workload. However, the performance of that work suffers in the presence of correlated data and skewed query workloads, both of which are common in real applications. In this paper, we introduce Tsunami, which addresses these limitations to achieve up to 6X faster query performance and up to 8X smaller index size than existing learned multi-dimensional indexes, in addition to up to 11X faster query performance and 170X smaller index size than optimally-tuned traditional indexes.
High dimensional data analysis for exploration and discovery includes three fundamental tasks: dimensionality reduction, clustering, and visualization. When the three associated tasks are done separately, as is often the case thus far, inconsistencies can occur among the tasks in terms of data geometry and others. This can lead to confusing or misleading data interpretation. In this paper, we propose a novel neural network-based method, called Consistent Representation Learning (CRL), to accomplish the three associated tasks end-to-end and improve the consistencies. The CRL network consists of two nonlinear dimensionality reduction (NLDR) transformations: (1) one from the input data space to the latent feature space for clustering, and (2) the other from the clustering space to the final 2D or 3D space for visualization. Importantly, the two NLDR transformations are performed to best satisfy local geometry preserving (LGP) constraints across the spaces or network layers, to improve data consistencies along with the processing flow. Also, we propose a novel metric, clustering-visualization inconsistency (CVI), for evaluating the inconsistencies. Extensive comparative results show that the proposed CRL neural network method outperforms the popular t-SNE and UMAP-based and other contemporary clustering and visualization algorithms in terms of evaluation metrics and visualization.
This letter proposes a new spoof surface plasmon transmission line (SSP-TL) using capacitor loading techniques. This new SSP-TL features flexible and reconfigurable dispersion control and highly selective filtering performance without resorting to configuration change. Moreover, it requires much smaller line width than the conventional SSP-TLs for achieving a extremely slow wave (or a highly confined field), which is quite useful for a compact system. To illustrate the design principle, several examples are designed within the frequency range of 2-8 GHz. Both numerical and experimental results are given in comparison with the conventional SSP-TL. It is demonstrated that the proposed technique provides a better performance in size reduction and dispersion reconfigurability.
Approximate Nearest neighbor search (ANNS) is fundamental and essential operation in applications from many domains, such as databases, machine learning, multimedia, and computer vision. Although many algorithms have been continuously proposed in the literature in the above domains each year, there is no comprehensive evaluation and analysis of their performances. In this paper, we conduct a comprehensive experimental evaluation of many state-of-the-art methods for approximate nearest neighbor search. Our study (1) is cross-disciplinary (i.e., including 16 algorithms in different domains, and from practitioners) and (2) has evaluated a diverse range of settings, including 20 datasets, several evaluation metrics, and different query workloads. The experimental results are carefully reported and analyzed to understand the performance results. Furthermore, we propose a new method that achieves both high query efficiency and high recall empirically on majority of the datasets under a wide range of settings.