Do you want to publish a course? Click here

The Three Hundred project: shapes and radial alignment of satellite, infalling, and backsplash galaxies

88   0   0.0 ( 0 )
 Added by Alexander Knebe
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using 324 numerically modelled galaxy clusters we investigate the radial and galaxy-halo alignment of dark matter subhaloes and satellite galaxies orbiting within and around them. We find that radial alignment depends on distance to the centre of the galaxy cluster but appears independent of the dynamical state of the central host cluster. Furthermore, we cannot find a relation between radial alignment of the halo or galaxy shape with its own mass. We report that backsplash galaxies, i.e. objects that have already passed through the cluster radius but are now located in the outskirts, show a stronger radial alignment than infalling objects. We further find that there exists a population of well radially aligned objects passing very close to the central clusters centre which were found to be on highly radial orbit.



rate research

Read More

In the outer regions of a galaxy cluster, galaxies may be either falling into the cluster for the first time, or have already passed through the cluster centre at some point in their past. To investigate these two distinct populations, we utilise TheThreeHundred project, a suite of 324 hydrodynamical resimulations of galaxy clusters. In particular, we study the backsplash population of galaxies; those that have passed within $R_{200}$ of the cluster centre at some time in their history, but are now outside of this radius. We find that, on average, over half of all galaxies between $R_{200}$ and $2R_{200}$ from their host at $z=0$ are backsplash galaxies, but that this fraction is dependent on the dynamical state of a cluster, as dynamically relaxed clusters have a greater backsplash fraction. We also find that this population is mostly developed at recent times ($zleq0.4$), and is dependent on the recent history of a cluster. Finally, we show that the dynamical state of a given cluster, and thus the fraction of backsplash galaxies in its outskirts, can be predicted based on observational properties of the cluster.
We analyse the gas content evolution of infalling haloes in cluster environments from THE THREE HUNDRED project, a collection of 324 numerically modelled galaxy clusters. The haloes in our sample were selected within $5R_{200}$ of the main cluster halo at $z=0$ and have total halo mass $M_{200}geq10^{11} h^{-1} M_{odot}$. We track their main progenitors and study their gas evolution since their crossing into the infall region, which we define as $1-4R_{200}$. Studying the radial trends of our populations using both the full phase space information and a line-of-sight projection, we confirm the Arthur et al. (2019) result and identify a characteristic radius around $1.7R_{200}$ in 3D and at $R_{200}$ in projection at which infalling haloes lose nearly all of the gas prior their infall. Splitting the trends by subhalo status we show that subhaloes residing in group-mass and low-mass host haloes in the infall region follow similar radial gas-loss trends as their hosts, whereas subhaloes of cluster-mass host haloes are stripped of their gas much further out. Our results show that infalling objects suffer significant gaseous disruption that correlates with time-since-infall, cluster-centric distance and host mass, and that the gaseous disruption they experience is a combination of subhalo pre-processing and object gas depletion at a radius which behaves like an accretion shock.
Using 324 numerically modelled galaxy clusters as provided by THE THREE HUNDRED project, we study the evolution of the kinematic properties of the stellar component of haloes on first infall. We select objects with M$_{textrm{star}}>5times10^{10} h^{-1}M_{odot}$ within $3R_{200}$ of the main cluster halo at $z=0$ and follow their progenitors. We find that although haloes are stripped of their dark matter and gas after entering the main cluster halo, there is practically no change in their stellar kinematics. For the vast majority of our `galaxies -- defined as the central stellar component found within the haloes that form our sample -- their kinematic properties, as described by the fraction of ordered rotation, and their position in the specific stellar angular momentum$-$stellar mass plane $j_{rm star}$ -- M$_{rm star}$, are mostly unchanged by the influence of the central host cluster. However, for a small number of infalling galaxies, stellar mergers and encounters with remnant stellar cores close to the centre of the main cluster, particularly during pericentre passage, are able to spin-up their stellar component by $z=0$.
Using the catalogues of galaxy clusters from The Three Hundred project, modelled with both hydrodynamic simulations, (Gadget-X and Gadget-MUSIC), and semi-analytic models (SAMs), we study the scatter and self-similarity of the profiles and distributions of the baryonic components of the clusters: the stellar and gas mass, metallicity, the stellar age, gas temperature, and the (specific) star formation rate. Through comparisons with observational results, we find that the shape and the scatter of the gas density profiles matches well the observed trends including the reduced scatter at large radii which is a signature of self-similarity suggested in previous studies. One of our simulated sets, Gadget-X, reproduces well the shape of the observed temperature profile, while Gadget-MUSIC has a higher and flatter profile in the cluster centre and a lower and steeper profile at large radii. The gas metallicity profiles from both simulation sets, despite following the observed trend, have a relatively lower normalisation. The cumulative stellar density profiles from SAMs are in better agreement with the observed result than both hydrodynamic simulations which show relatively higher profiles. The scatter in these physical profiles, especially in the cluster centre region, shows a dependence on the cluster dynamical state and on the cool-core/non-cool-core dichotomy. The stellar age, metallicity and (s)SFR show very large scatter, which are then presented in 2D maps. We also do not find any clear radial dependence of these properties. However, the brightest central galaxies have distinguishable features compared to the properties of the satellite galaxies.
Dark matter-only simulations are able to produce the cosmic structure of a $Lambda$CDM universe, at a much lower computational cost than more physically motivated hydrodynamical simulations. However, it is not clear how well smaller substructure is reproduced by dark matter-only simulations. To investigate this, we directly compare the substructure of galaxy clusters and of surrounding galaxy groups in hydrodynamical and dark matter-only simulations. We utilise TheThreeHundred project, a suite of 324 simulations of galaxy clusters that have been simulated with hydrodynamics, and in dark matter-only. We find that dark matter-only simulations underestimate the number density of galaxies in the centres of groups and clusters relative to hydrodynamical simulations, and that this effect is stronger in denser regions. We also look at the phase space of infalling galaxy groups, to show that dark matter-only simulations underpredict the number density of galaxies in the centres of these groups by about a factor of four. This implies that the structure and evolution of infalling groups may be different to that predicted by dark matter-only simulations. Finally, we discuss potential causes for this underestimation, considering both physical effects, and numerical differences in the analysis.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا