Do you want to publish a course? Click here

Studying Type II supernovae as cosmological standard candles using the Dark Energy Survey

79   0   0.0 ( 0 )
 Added by Thomas de Jaeger
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Despite vast improvements in the measurement of the cosmological parameters, the nature of dark energy and an accurate value of the Hubble constant (H$_0$) in the Hubble-Lema^itre law remain unknown. To break the current impasse, it is necessary to develop as many independent techniques as possible, such as the use of Type II supernovae (SNe II). The goal of this paper is to demonstrate the utility of SNe II for deriving accurate extragalactic distances, which will be an asset for the next generation of telescopes where more-distant SNe II will be discovered. More specifically, we present a sample from the Dark Energy Survey Supernova Program (DES-SN) consisting of 15 SNe II with photometric and spectroscopic information spanning a redshift range up to 0.35. Combining our DES SNe with publicly available samples, and using the standard candle method (SCM), we construct the largest available Hubble diagram with SNe II in the Hubble flow (70 SNe II) and find an observed dispersion of 0.27 mag. We demonstrate that adding a colour term to the SN II standardisation does not reduce the scatter in the Hubble diagram. Although SNe II are viable as distance indicators, this work points out important issues for improving their utility as independent extragalactic beacons: find new correlations, define a more standard subclass of SNe II, construct new SN II templates, and dedicate more observing time to high-redshift SNe II. Finally, for the first time, we perform simulations to estimate the redshift-dependent distance-modulus bias due to selection effects.



rate research

Read More

We revisit the observed correlation between Hbeta and FeII velocities for Type II-P supernovae (SNe~II-P) using 28 optical spectra of 13 SNe II-P and demonstrate that it is well modeled by a linear relation with a dispersion of about 300 km/s. Using this correlation, we reanalyze the publicly available sample of SNe II-P compiled by DAndrea et al. and find a Hubble diagram with an intrinsic scatter of 11% in distance, which is nearly as tight as that measured before their sample is added to the existing set. The larger scatter reported in their work is found to be systematic, and most of it can be alleviated by measuring Hbeta rather than FeII velocities, due to the low signal-to-noise ratios and early epochs at which many of the optical spectra were obtained. Their sample, while supporting the mounting evidence that SNe II-P are good cosmic rulers, is biased toward intrinsically brighter objects and is not a suitable set to improve upon SN II-P correlation parameters. This will await a dedicated survey.
194 - Kate Maguire 2009
We present the first near infrared Hubble diagram for type II-P supernovae to further explore their value as distance indicators. We use a modified version of the standardised candle method which relies on the tight correlation between the absolute magnitudes of type II-P supernovae and their expansion velocities during the plateau phase. Although our sample contains only 12 II-P supernovae and they are necessarily local (z < 0.02), we demonstrate using near infrared JHK photometry that it may be possible to reduce the scatter in the Hubble diagram to 0.1-0.15 magnitudes. While this is potentially similar to the dispersion seen for type Ia supernovae, we caution that this needs to be confirmed with a larger sample of II-P supernovae in the Hubble flow.
The most precise local measurements of $H_0$ rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing $H_0$ to the value inferred from CMB observations assuming $Lambda$CDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local $H_0$ measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where intrinsic variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak $J$ magnitude $M_J = -18.524;pm;0.041$ mag and $H_0 = 72.8;pm;1.6$ (statistical) $pm$ 2.7 (systematic) km s$^{-1}$ Mpc$^{-1}$. The 2.2 $%$ statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak $J$ magnitude scatter is just $sim$0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing $H_0$ distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in $H_0$ with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak $J$-band magnitude.
We introduce a new distance determination method using carbon-rich asymptotic giant branch stars (CS) as standard candles and the Large and Small Magellanic Clouds (LMC and SMC) as the fundamental calibrators. We select the samples of CS from the ($(J-K_{s})_0$, $J_0$) colour-magnitude diagrams, as, in this combination of filters, CS are bright and easy to identify. We fit the CS $J$-band luminosity functions using a Lorentzian distribution modified to allow the distribution to be asymmetric. We use the parameters of the best-fit distribution to determine if the CS luminosity function of a given galaxy resembles that of the LMC or SMC. Based on this resemblance, we use either the LMC or SMC as the calibrator and estimate the distance to the given galaxy using the median $J$ magnitude ($overline{J}$) of the CS samples. We apply this new method to the two Local Group galaxies NGC 6822 and IC 1613. We find that NGC 6822 has an LMC-like CS luminosity function while IC 1613 is more SMC-like. Using the values for the median absolute $J$ magnitude for the LMC and SMC found in Paper I we find a distance modulus of $mu_{0}=23.54pm0.03$ (stat) for NGC 6822 and $mu_{0}=24.34pm0.05$ (stat) for IC 1613.
We present a new catalogue of ~2,400 optically selected quasars with spectroscopic redshifts and X-ray observations from either Chandra or XMM-Newton. The sample can be used to investigate the non-linear relation between the UV and X-ray luminosity of quasars, and to build a Hubble diagram up to redshift z~7.5. We selected sources that are neither reddened by dust in the optical/UV nor obscured by gas in the X-rays, and whose X-ray fluxes are free from flux-limit related biases. After checking for any possible systematics, we confirm, in agreement with our previous works, that (i) the X-ray to UV relation provides distance estimates matching those from supernovae up to z~1.5, and (ii) its slope shows no redshift evolution up to z~5. We provide a full description of the methodology for testing cosmological models, further supporting a trend whereby the Hubble diagram of quasars is well reproduced by the standard flat $Lambda$CDM model up to z~1.5-2, but strong deviations emerge at higher redshifts. Since we have minimized all non-negligible systematic effects, and proven the stability of the $L_{rm X}-L_{rm UV}$ relation at high redshifts, we conclude that an evolution of the expansion rate of the Universe should be considered as a possible explanation for the observed deviation, rather than some systematic (redshift-dependent) effect associated with high-redshift quasars.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا