Do you want to publish a course? Click here

ARES II: Characterising the Hot Jupiters WASP-127 b, WASP-79 b and WASP-62 b with HST

366   0   0.0 ( 0 )
 Added by Billy Edwards
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

This paper presents the atmospheric characterisation of three large, gaseous planets: WASP-127b, WASP-79b and WASP-62b. We analysed spectroscopic data obtained with the G141 grism (1.088 - 1.68 $mu$m) of the Wide Field Camera 3 (WFC3) onboard the Hubble Space Telescope (HST) using the Iraclis pipeline and the TauREx3 retrieval code, both of which are publicly available. For WASP-127 b, which is the least dense planet discovered so far and is located in the short-period Neptune desert, our retrieval results found strong water absorption corresponding to an abundance of log(H$_2$O) = -2.71$^{+0.78}_{-1.05}$, and absorption compatible with an iron hydride abundance of log(FeH)=$-5.25^{+0.88}_{-1.10}$, with an extended cloudy atmosphere. We also detected water vapour in the atmospheres of WASP-79 b and WASP-62 b, with best-fit models indicating the presence of iron hydride, too. We used the Atmospheric Detectability Index (ADI) as well as Bayesian log evidence to quantify the strength of the detection and compared our results to the hot Jupiter population study by Tsiaras et al. 2018. While all the planets studied here are suitable targets for characterisation with upcoming facilities such as the James Webb Space Telescope (JWST) and Ariel, WASP-127 b is of particular interest due to its low density, and a thorough atmospheric study would develop our understanding of planet formation and migration.



rate research

Read More

We present the discovery by the WASP-South transit survey of three new transiting hot Jupiters, WASP-161 b, WASP-163 b and WASP-170 b. Follow-up radial velocities obtained with the Euler/CORALIE spectrograph and high-precision transit light curves obtained with the TRAPPIST-North, TRAPPIST-South, SPECULOOS-South, NITES, and Euler telescopes have enabled us to determine the masses and radii for these transiting exoplanets. WASP-161,b completes an orbit around its $V=11.1$ F6V-type host star in 5.406 days, and has a mass and radius of $2.5pm 0.2$$M_{Jup}$ and $1.14pm 0.06$ $R_{Jup}$ respectively. WASP-163,b has an orbital period of 1.609 days, a mass of $1.9pm0.2$ $M_{Jup}$, and a radius of $1.2pm0.1$ $R_{Jup}$. Its host star is a $V=12.5$ G8-type dwarf. WASP-170,b is on a 2.344 days orbit around a G1V-type star of magnitude $V=12.8$. It has a mass of $1.7pm0.2$ $M_{Jup}$ and a radius of $1.14pm0.09$ $R_{Jup}$. Given their irradiations ($sim10^9$ erg.s$^{-1}$.cm$^{-2}$) and masses, the three new planets sizes are in good agreement with classical structure models of irradiated giant planets.
We report the discovery of two new transiting planets from the WASP survey. WASP-42 b is a 0.500 +/- 0.035 M_jup planet orbiting a K1 star at a separation of 0.0548 +/- 0.0017 AU with a period of 4.9816872 +/- 7.3 x 10^-6 days. The radius of WASP-42 b is 1.080 +/- 0.057 R_jup while its equilibrium temperature is T_eq = 995 +/- 34 K. We detect some evidence for a small but non-zero eccentricity of e=0.060 +/- 0.013. WASP-49 b is a 0.378 +/- 0.027 M_jup planet around an old G6 star. It has a period of 2.7817387 +/- 5.6 x 10^-6 days and a separation of 0.0379 +/- 0.0011 AU. This planet is slightly bloated, having a radius of 1.115 +/- 0.047 R_jup and an equilibrium temperature of T_eq = 1369 +/- 39 K. Both planets have been followed up photometrically, and in total we have obtained 5 full and one partial transit light curves of WASP-42 and 4 full and one partial light curves of WASP-49 using the Euler-Swiss, TRAPPIST and Faulkes South telescopes.
We report the discovery by the WASP transit survey of three new hot Jupiters, WASP-68 b, WASP-73 b and WASP-88 b. WASP-68 b has a mass of 0.95+-0.03 M_Jup, a radius of 1.24-0.06+0.10 R_Jup, and orbits a V=10.7 G0-type star (1.24+-0.03 M_sun, 1.69-0.06+0.11 R_sun, T_eff=5911+-60 K) with a period of 5.084298+-0.000015 days. Its size is typical of hot Jupiters with similar masses. WASP-73 b is significantly more massive (1.88-0.06+0.07 M_Jup) and slightly larger (1.16-0.08+0.12 R_Jup) than Jupiter. It orbits a V=10.5 F9-type star (1.34-0.04+0.05 M_sun, 2.07-0.08+0.19 R_sun, T_eff=6036+-120 K) every 4.08722+-0.00022 days. Despite its high irradiation (2.3 10^9 erg s^-1 cm^-2), WASP-73 b has a high mean density (1.20-0.30+0.26 rho_Jup) that suggests an enrichment of the planet in heavy elements. WASP-88 b is a 0.56+-0.08 M_Jup planet orbiting a V=11.4 F6-type star (1.45+-0.05 M_sun, 2.08-0.06+0.12 R_sun, T_eff=6431+-130 K) with a period of 4.954000+-0.000019 days. With a radius of 1.70-0.07+0.13 R_Jup, it joins the handful of planets with super-inflated radii. The ranges of ages we determine through stellar evolution modeling are 4.2-8.3 Gyr for WASP-68, 2.7-6.4 Gyr for WASP-73 and 1.8-5.3 Gyr for WASP-88. WASP-73 appears to be a significantly evolved star, close to or already in the subgiant phase. WASP-68 and WASP-88 are less evolved, although in an advanced stage of core H-burning.
We present TransitFit, an open-source Python~3 package designed to fit exoplanetary transit light-curves for transmission spectroscopy studies (Available at https://github.com/joshjchayes/TransitFit and https://github.com/spearnet/TransitFit, with documentation at https://transitfit.readthedocs.io/). TransitFit employs nested sampling to offer efficient and robust multi-epoch, multi-wavelength fitting of transit data obtained from one or more telescopes. TransitFit allows per-telescope detrending to be performed simultaneously with parameter fitting, including the use of user-supplied detrending alogorithms. Host limb darkening can be fitted either independently (uncoupled) for each filter or combined (coupled) using prior conditioning from the PHOENIX stellar atmosphere models. For this TransitFit uses the Limb Darkening Toolkit (LDTk) together with filter profiles, including user-supplied filter profiles. We demonstrate the application of TransitFit in three different contexts. First, we model SPEARNET broadband optical data of the low-density hot-Neptune WASP-127~b. The data were obtained from a globally-distributed network of 0.5m--2.4m telescopes. We find clear improvement in our broadband results using the coupled mode over uncoupled mode, when compared against the higher spectral resolution GTC/OSIRIS transmission spectrum obtained by Chen et al. (2018). Using TransitFit, we fit 26 transit observations by TESS to recover improved ephemerides of the hot-Jupiter WASP-91~b and a transit depth determined to a precision of 170~ppm. Finally, we use TransitFit to conduct an investigation into the contested presence of TTV signatures in WASP-126~b using 126 transits observed by TESS, concluding that there is no statistically significant evidence for such signatures from observations spanning 31 TESS sectors.
We present new transit light curves for planets in six extrasolar planetary systems. They were acquired with 0.4-2.2 m telescopes located in west Asia, Europe, and South America. When combined with literature data, they allowed us to redetermine system parameters in a homogeneous way. Our results for individual systems are in agreement with values reported in previous studies. We refined transit ephemerides and reduced uncertainties of orbital periods by a factor between 2 and 7. No sign of any variations in transit times was detected for the planets studied.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا