Do you want to publish a course? Click here

Spin transport in a tunable Heisenberg model realized with ultracold atoms

310   0   0.0 ( 0 )
 Added by Niklas Jepsen
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Simple models of interacting spins play an important role in physics. They capture the properties of many magnetic materials, but also extend to other systems, such as bosons and fermions in a lattice, systems with gauge fields, high-Tc superconductors, and systems with exotic particles such as anyons and Majorana fermions. In order to study and compare these models, a versatile platform is needed. Realizing such a system has been a long-standing goal in the field of ultracold atoms. So far, spin transport has only been studied in the isotropic Heisenberg model. Here we implement the Heisenberg XXZ model with adjustable anisotropy and use this system to study spin transport far from equilibrium after quantum quenches from imprinted spin helix patterns. In the non-interacting XX model, we find ballistic behavior of spin dynamics, while in the isotropic XXX model, we find diffusive behavior. For positive anisotropies, the dynamics ranges from anomalous super-diffusion to sub-diffusion depending on anisotropy, whereas for negative anisotropies, we observe a crossover in the time domain from ballistic to diffusive transport. This behavior contrasts with expectations for the linear response regime and raises new questions in understanding quantum many-body dynamics far away from equilibrium.



rate research

Read More

In Heisenberg models with exchange anisotropy, transverse spin components are not conserved and can decay not only by transport, but also by dephasing. Here we utilize ultracold atoms to simulate the dynamics of 1D Heisenberg spin chains, and observe fast, local spin decay controlled by the anisotropy. Additionally, we directly observe an effective magnetic field created by superexchange which causes an inhomogeneous decay mechanism due to variations of lattice depth between chains, as well as dephasing within each chain due to the twofold reduction of the effective magnetic field at the edges of the chains and due to fluctuations of the effective magnetic field in the presence of mobile holes. The latter is a new coupling mechanism between holes and magnons. All these dephasing mechanisms, corroborated by extensive numerical simulations, have not been observed before with ultracold atoms and illustrate basic properties of the underlying Hubbard model.
107 - Wei Gou , Tao Chen , Dizhou Xie 2020
We report the experimental observation of tunable, non-reciprocal quantum transport of a Bose-Einstein condensate in a momentum lattice. By implementing a dissipative Aharonov-Bohm (AB) ring in momentum space and sending atoms through it, we demonstrate a directional atom flow by measuring the momentum distribution of the condensate at different times. While the dissipative AB ring is characterized by the synthetic magnetic flux through the ring and the laser-induced loss on it, both the propagation direction and transport rate of the atom flow sensitively depend on these highly tunable parameters. We demonstrate that the non-reciprocity originates from the interplay of the synthetic magnetic flux and the laser-induced loss, which simultaneously breaks the inversion and the time-reversal symmetries. Our results open up the avenue for investigating non-reciprocal dynamics in cold atoms, and highlight the dissipative AB ring as a flexible building element for applications in quantum simulation and quantum information.
161 - S.-W. Su , S.-C. Gou , I.-K. Liu 2014
We theoretically explore atomic Bose-Einstein condensates (BECs) subject to position-dependent spin-orbit coupling (SOC). This SOC can be produced by cyclically laser coupling four internal atomic ground (or metastable) states in an environment where the detuning from resonance depends on position. The resulting spin-orbit coupled BEC phase-separates into domains, each of which contain density modulations - stripes - aligned either along the x or y direction. In each domain, the stripe orientation is determined by the sign of the local detuning. When these stripes have mismatched spatial periods along domain boundaries, non-trivial topological spin textures form at the interface, including skyrmions-like spin vortices and anti-vortices. In contrast to vortices present in conventional rotating BECs, these spin-vortices are stable topological defects that are not present in the corresponding homogenous stripe-phase spin-orbit coupled BECs.
We dress atoms with multiple-radiofrequency fields and investigate the spectrum of transitions driven by an additional probe field. A complete theoretical description of this rich spectrum is presented, in which we find allowed transitions and determine their amplitudes using the resolvent formalism. Experimentally, we observe transitions up to sixth order in the probe field using radiofrequency spectroscopy of Bose-Einstein condensates trapped in single- and multiple-radiofrequency-dressed potentials. We find excellent agreement between theory and experiment, including the prediction and verification of previously unobserved transitions, even in the single-radiofrequency case.
The simultaneous presence of two competing inter-particle interactions can lead to the emergence of new phenomena in a many-body system. Among others, such effects are expected in dipolar Bose-Einstein condensates, subject to dipole-dipole interaction and short-range repulsion. Magnetic quantum gases and in particular Dysprosium gases, offering a comparable short-range contact and a long-range dipolar interaction energy, remarkably exhibit such emergent phenomena. In addition an effective cancellation of mean-field effects of the two interactions results in a pronounced importance of quantum-mechanical beyond mean-field effects. For a weakly-dominant dipolar interaction the striking consequence is the existence of a new state of matter equilibrated by the balance between weak mean-field attraction and beyond mean-field repulsion. Though exemplified here in the case of dipolar Bose gases, this state of matter should appear also with other microscopic interactions types, provided a competition results in an effective cancellation of the total mean-field. The macroscopic state takes the form of so-called quantum droplets. We present the effects of a long-range dipolar interaction between these droplets.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا