A two-neutron halo is unveiled in $^{29}$F


Abstract in English

We report the measurement of reaction cross sections ($sigma_R^{rm ex}$) of $^{27,29}$F with a carbon target at RIKEN. The unexpectedly large $sigma_R^{rm ex}$ and derived matter radius identify $^{29}$F as the heaviest two-neutron Borromean halo to date. The halo is attributed to neutrons occupying the $2p_{3/2}$ orbital, thereby vanishing the shell closure associated with the neutron number $N = 20$. The results are explained by state-of-the-art shell model calculations. Coupled-cluster computations based on effective field theories of the strong nuclear force describe the matter radius of $^{27}$F but are challenged for $^{29}$F.

Download