Do you want to publish a course? Click here

Star formation in outer rings of S0 galaxies. III. UGC 5936 -- an S0 with currently accreted satellite matter

66   0   0.0 ( 0 )
 Added by Olga Sil'chenko
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Though S0 galaxies are usually thought to be `red and dead, they demonstrate often star formation organized in ring structures. We try to clarify the nature of this phenomenon and its difference from star formation in spiral galaxies. The luminous S0 galaxy with a large ring, UGC 5936, is studied here. By applying long-slit spectroscopy along the major axis of UGC 5936, we have measured gas and star kinematics, Lick indices for the main body of the galaxy, and strong emission-line flux ratios in the ring. After inspecting the gas excitation in the ring using line ratios diagnostic diagrams and having ensured that it is ionized mostly by young stars, we have determined the gas oxygen abundance by using popular strong-line methods. Also we have proved the spatial proximity of the south-eastern dwarf satellite to UGC 5936 and have measured its gas metallicity. The ionized gas of the ring is excited by young stars and has solar metallicity. Star formation in the ring is rather prolonged, and its intensity corresponds to the current HI content of UGC 5936 (to the Kennicutt-Schmidt relation). The whole morphology of the HI distribution implies current accretion of the cold gas from the satellite onto the outer disc of UGC 5936; due to the satellite location and rotation in the plane of the stellar disc of the host galaxy, the accretion is smooth and laminar providing the favorable condition for star formation ignition.

rate research

Read More

Though S0 galaxies are usually thought to be `red and dead, they demonstrate often star formation organized in ring structures. We try to clarify the nature of this phenomenon and its difference from star formation in spiral galaxies. The moderate-luminosity nearby S0 galaxy, NGC 4513, is studied here. By applying long-slit spectroscopy along the major axis of NGC 4513, we have measured gas and star kinematics, Lick indices for the main body of the galaxy, and strong emission-line flux ratios in the ring. After inspecting the gas excitation in the ring using the line ratios diagnostic diagrams and have assured that it is ionized by young stars, we have determined the gas oxygen abundance by using popular strong-line calibration methods. We have estimated star formation rate (SFR) in the outer ring by using the archival Galaxy Evolution Explorer (GALEX) ultraviolet images of the galaxy. The ionized gas counterrotates the stars over the whole extension of NGC 4513 so being accreted from outside. The gas metallicity in the ring is slightly subsolar, [O/H]=-0.2 dex, matching the metallicity of the stellar component of the main galactic disc. However the stellar component of the ring is much more massive than can be explained by the current star formation level in the ring. We conclude that probably the ring of NGC 4513 is a result of tidal disruption of a massive gas-rich satellite, or it may be a consequence of a long star-formation event provoked by a gas accretion from a cosmological filament having started some 3 Gyr ago.
Though S0 galaxies are usually thought to be `red and dead, they often demonstrate star formation organized in ring structures. We try to clarify the nature of this phenomenon and its difference from star formation in spiral galaxies. Two early-type galaxies with outer rings, NGC 6534 and MCG 11-22-015, are selected to be studied. The ionized gas is excited by young stars in the ring of NGC 6534 and partly by shocks -- in MCG 11-22-015. The oxygen abundances in the HII regions of the rings are close to solar. We estimate the star formation rates (SFR) in the two outer rings of the galaxies by using several SFR indicators derived from narrow-band photometry in the H-alpha emission line and archival GALEX ultraviolet images of the galaxies. The derived SFRs allow to qualitatively restore star formation histories (SFH) in the rings: in NGC 6534 the SFH is flat during the last 100-200 Myr, and in MCG 11-22-015 the star formation has started only a few Myr ago. We suggest that the rings in NGC 6534 and MCG 11-22-015 have different natures: the former is a resonant one supplied with gas perhaps through tidal effects, and the latter has been produced by a satellite accretion. Recent outer gas accretion is implied in both cases.
Very little work has been done on star formation in dwarf lenticular galaxies (S0s). We present 2D-spectroscopic and millimetre observations made by Centro Astronomico Hispano Aleman (CAHA) 3.5 m optical and the IRAM-30 m millimetre telescopes, respectively, for a sample of four dwarf S0 galaxies with multiple star formation regions in the field environment. We find that although most of the sources deviate from the star forming main sequence relation, they all follow the Kennicutt-Schmidt law. After comparing the stellar and Halpha kinematics, we find that the velocity fields of both stars and ionized gas do not show regular motion and the velocity dispersions of stars and ionized gas are low in the regions with high star formation, suggesting these star-forming S0 galaxies still have significant rotation. This view can be supported by the result that most of these dwarf S0 galaxies are classified as fast rotators. The ratio of average atomic gas mass to stellar mass (~ 47%) is much greater than that of molecular gas mass to stellar mass (~ 1%). In addition, the gas-phase metallicities in the star-forming regions are lower than that of the non-star-forming regions. These results indicate that the extended star formation may originate from the combination of abundant atomic hydrogen, long dynamic time scale and low-density environment.
83 - David T. Maltby 2014
We present an analysis of V-band radial surface brightness {mu}(r) profiles for S0s in different environments using HST/ACS imaging and data from the Space Telescope A901/2 Galaxy Evolution Survey (STAGES). Using a sample of ~280 field and cluster S0s, we find that in both environments, ~25 per cent have a pure exponential disc (Type I) and ~50 per cent exhibit an up-bending disc break (antitruncation, Type III). However, we find hardly any (< 5 per cent) down-bending disc breaks (truncations, Type II) in our S0s and many cases (~20 per cent) where no exponential component was observed. We also find no evidence for an environmental dependence on the disc scalelength or break strength (outer-to-inner scalelength ratio), implying that the galaxy environment does not affect the stellar distribution in S0 stellar discs. Comparing disc structure between these S0s and the spirals from our previous studies, we find: i) no evidence for the Type I scalelength being dependent on morphology; and ii) some evidence suggesting the Type II/III break strength is smaller (weaker) in S0s compared to spirals. Taken together, these results suggest that the stellar distribution in S0s is not drastically affected by the galaxy environment. However, some process inherent to the morphological transformation of spirals into S0s does affect the stellar disc causing a weakening of {mu}(r) breaks and may even eliminate truncations from S0s. In further tests, we perform analytical bulge-disc decompositions on our S0s and compare the results to those for spirals from our previous studies. For Type III galaxies, we find that bulge light can account for the excess light at large radii in up to ~50 per cent of S0s but in only ~15 per cent of spirals. We propose that this result is consistent with a fading stellar disc (evolving bulge-to-disc ratio) being an inherent process in the transformation of spirals into S0s.
Gas stripping of spiral galaxies or mergers are thought to be the formation mechanisms of lenticular galaxies. In order to determine the conditions in which each scenario dominates, we derive stellar populations of both the bulge and disk regions of 279 lenticular galaxies in the MaNGA survey. We find a clear bimodality in stellar age and metallicity within the population of S0s and this is strongly correlated with stellar mass. Old and metal-rich bulges and disks belong to massive galaxies, and young and metal-poor bulges and disks are hosted by low-mass galaxies. From this we conclude that the bulges and disks are co-evolving. When the bulge and disk stellar ages are compared, we find that the bulge is almost always older than the disk for massive galaxies ($textrm{M}_{star} > 10^{10}~textrm{M}_{odot}$). The opposite is true for lower mass galaxies. We conclude that we see two separate populations of lenticular galaxies. The old, massive, and metal-rich population possess bulges that are predominantly older than their disks, which we speculate may have been caused by morphological or inside-out quenching. In contrast, the less massive and more metal-poor population have bulges with more recent star formation than their disks. We postulate they may be undergoing bulge rejuvenation (or disk fading), or compaction. Environment doesnt play a distinct role in the properties of either population. Our findings give weight to the notion that while the faded spiral scenario likely formed low-mass S0s, other processes, such as mergers, may be responsible for high-mass S0s.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا