No Arabic abstract
We revisit the theory of the Kondo effect observed by a scanning-tunneling microscope (STM) for transition-metal atoms (TMAs) on noble-metal surfaces, including $d$ and $s$ orbitals of the TMA, surface and bulk conduction states of the metal, and their hoppingto the tip of the STM. Fitting the experimentally observed STM differential conductance for Co on Cu(111) including both, the Kondo feature near the Fermi energy and the resonance below the surface band, we conclude that the STM senses mainly the Co $s$ orbital and that the Kondo antiresonance is due to interference between states with electrons in the $s$ orbital and a localized $d$ orbital mediated by the conduction states.
We calculate the conductance spectra of a Co atom adsorbed on Cu(111), considering the Co $3d$ orbitals within a correlated multiple configurations model interacting through the substrate band with the Co $4s$ orbital, which is treated in a mean-field like approximation. By symmetry, only the $d_{z^2}$ orbital couples with the $s$ orbital through the Cu bands, and the interference between both conduction channels introduces a zero-bias anomaly in the conductance spectra. We find that, while the Kondo resonance is mainly determined by the interaction of the Co $d$ orbitals with the bulk states of the Cu(111) surface, a proper description of the contribution given by the coupling with the localized surface states to the Anderson widths is crucial to describe the interference line shape. We find that the coupling of the Co $4s$ orbital with the Shockley surface states is responsible of two main features observed in the measured conductance spectra, the dip shape around the Fermi energy and the resonance structure at the surface state low band edge.
Low-temperature scanning tunneling microscopy and spectroscopy are employed to investigate electron tunneling from a C60-terminated tip into a Cu(111) surface. Tunneling between a C60 orbital and the Shockley surface states of copper is shown to produce negative differential conductance (NDC) contrary to conventional expectations. NDC can be tuned through barrier thickness or C60 orientation up to complete extinction. The orientation dependence of NDC is a result of a symmetry matching between the molecular tip and the surface states.
Low-temperature scanning tunneling spectroscopy reveals that the Kondo temperature T_K of Co atoms adsorbed on Cu/Co/Cu(100) multilayers varies between 60 K and 134 K as the Cu film thickness decreases from 20 to 5 atomic layers. The observed change of T_K is attributed to a variation of the density of states at the Fermi level rho_F induced by quantum well states confined to the Cu film. A model calculation based on the quantum oscillations of rho_F at the belly and the neck of the Cu Fermi surface reproduces most of the features in the measured variation of T_K.
The Kondo zero bias anomaly of Co adatoms probed by scanning tunneling microscopy is known to depend on the height of the tip above the surface, and this dependence is different on different low index Cu surfaces. On the (100) surface, the Kondo temperature first decreases then increases as the tip approaches the adatom, while on the (111) surface it is virtually unaffected. These trends are captured by combined density functional theory and numerical renormalization group (DFT+NRG) calculations. The adatoms are found to be described by an S = 1 Anderson model on both surfaces, and ab initio calculations help identify the symmetry of the active d orbitals. We correctly reproduce the Fano lineshape of the zero bias anomaly for Co/Cu(100) in the tunneling regime but not in the contact regime, where it is probably dependent on the details of the tip and contact geometry. The lineshape for Co/Cu(111) is presumably affected by the presence of surface states, which are not included in our method. We also discuss the role of symmetry, which is preserved in our model scattering geometry but most likely broken in experimental conditions.
We present a study of graphene/substrate interactions on UHV-grown graphene islands with minimal surface contamination using emph{in situ} low-temperature scanning tunneling microscopy (STM). We compare the physical and electronic structure of the sample surface with atomic spatial resolution on graphene islands versus regions of bare Cu(111) substrate. We find that the Rydberg-like series of image potential states is shifted toward lower energy over the graphene islands relative to Cu(111), indicating a decrease in the local work function, and the resonances have a much smaller linewidth, indicating reduced coupling to the bulk. In addition, we show the dispersion of the occupied Cu(111) Shockley surface state is influenced by the graphene layer, and both the band edge and effective mass are shifted relative to bare Cu(111).