Holographic QFTs on S$^2times $S$^2$, spontaneous symmetry breaking and Efimov saddle points


Abstract in English

Holographic CFTs and holographic RG flows on space-time manifolds which are $d$-dimensional products of spheres are investigated. On the gravity side, this corresponds to Einstein-dilaton gravity on an asymptotically $AdS_{d+1}$ geometry, foliated by a product of spheres. We focus on holographic theories on $S^2times S^2$, we show that the only regular five-dimensional bulk geometries have an IR endpoint where one of the sphere shrinks to zero size, while the other remains finite. In the $Z_2$-symmetric limit, where the two spheres have the same UV radii, we show the existence of a infinite discrete set of regular solutions, satisfying an Efimov-like discrete scaling. The $Z_2$-symmetric solution in which both spheres shrink to zero at the endpoint is singular, whereas the solution with lowest free energy is regular and breaks $Z_2$ symmetry spontaneously. We explain this phenomenon analytically by identifying an unstable mode in the bulk around the would-be $Z_2$-symmetric solution. The space of theories have two branches that are connected by a conifold transition in the bulk, which is regular and correspond to a quantum first order transition. Our results also imply that $AdS_5$ does not admit a regular slicing by $S^2times S^2$.

Download