No Arabic abstract
Among the known resources of quantum metrology, one of the most practical and efficient is squeezing. Squeezed states of atoms and light improve the sensing of the phase, magnetic field, polarization, mechanical displacement. They promise to considerably increase signal-to-noise ratio in imaging and spectroscopy, and are already used in real-life gravitational-wave detectors. But despite being more robust than other states, they are still very fragile, which narrows the scope of their application. In particular, squeezed states are useless in measurements where the detection is inefficient or the noise is high. Here, we experimentally demonstrate a remedy against loss and noise: strong noiseless amplification before detection. This way, we achieve loss-tolerant operation of an interferometer fed with squeezed and coherent light. With only 50% detection efficiency and with noise exceeding the level of squeezed light more than 50 times, we overcome the shot-noise limit by 6~dB. Sub-shot-noise phase sensitivity survives up to 87% loss. Application of this technique to other types of optical sensing and imaging promises a full use of quantum resources in these fields.
Noise can be considered the natural enemy of quantum information. An often implied benefit of high-dimensional entanglement is its increased resilience to noise. However, manifesting this potential in an experimentally meaningful fashion is challenging and has never been done before. In infinite dimensional spaces, discretisation is inevitable and renders the effective dimension of quantum states a tunable parameter. Owing to advances in experimental techniques and theoretical tools, we demonstrate an increased resistance to noise by identifying two pathways to exploit high-dimensional entangled states. Our study is based on two separate experiments utilising canonical spatio-temporal properties of entangled photon pairs. Following these different pathways to noise resilience, we are able to certify entanglement in the photonic orbital-angular-momentum and energy-time degrees of freedom up to noise conditions corresponding to a noise fraction of 72 % and 92 % respectively. Our work paves the way towards practical quantum communication systems that are able to surpass current noise and distance limitations, while not compromising on potential device-independence.
Advances in integrated photonics open exciting opportunities for batch-fabricated optical sensors using high quality factor nanophotonic cavities to achieve ultra-high sensitivities and bandwidths. The sensitivity improves with higher optical power, however, localized absorption and heating within a micrometer-scale mode volume prominently distorts the cavity resonances and strongly couples the sensor response to thermal dynamics, limiting the sensitivity and hindering the measurement of broadband time-dependent signals. Here, we derive a frequency-dependent photonic sensor transfer function that accounts for thermo-optical dynamics and quantitatively describes the measured broadband optomechanical signal from an integrated photonic atomic-force-microscopy nanomechanical probe. Using this transfer function, the probe can be operated in the high optical power, strongly thermo-optically nonlinear regime, reaching a sensitivity of $approx$ 0.4 fm/Hz$^{1/2}$, an improvement of $approx 10times$ relative to the best performance in the linear regime. Counterintuitively, we discover that higher transduction gain and sensitivity are obtained with lower quality factor optical modes for low signal frequencies. Not limited to optomechanical transducers, the derived transfer function is generally valid for describing small-signal dynamic response of a broad range of technologically important photonic sensors subject to the thermo-optical effect.
Magneto-optical sensors including spin noise spectroscopies and magneto-optical Kerr effect microscopies are now ubiquitous tools for materials characterization that can provide new understanding of spin dynamics, hyperfine interactions, spin-orbit interactions, and charge-carrier g-factors. Both interferometric and intensity-difference measurements can provide photon shot-noise limited sensitivity, but further improvements in sensitivity with classical resources require either increased laser power that can induce unwanted heating and electronic perturbations or increased measurement times that can obscure out-of-equilibrium dynamics and radically slow experimental throughput. Proof-of-principle measurements have already demonstrated quantum enhanced spin noise measurements with a squeezed readout field that are likely to be critical to the non-perturbative characterization of spin excitations in quantum materials that emerge at low temperatures. Here, we propose a truncated nonlinear interferometric readout for low-temperature magneto-optical Kerr effect measurements that is accessible with todays quantum optical resources. We show that 10 $text{nrad}/sqrt{text{Hz}}$ sensitivity is achievable with optical power as small as 1 $mu$W such that a realistic $T$ = 83 mK can be maintained in commercially available dilution refrigerators. The quantum advantage for the proposed measurements persists even in the limit of large loss and small squeezing parameters.
Laser-light (coherent-state) modulation is sufficient to achieve the ultimate (Holevo) capacity of classical communication over a lossy and noisy optical channel, but requires a receiver that jointly detects long modulated codewords with highly nonlinear quantum operations, which are near-impossible to realize using current technology. We analyze the capacity of the lossy-noisy optical channel when the transmitter uses coherent state modulation but the receiver is restricted to a general quantum-limited Gaussian receiver, i.e., one that may involve arbitrary combinations of Gaussian operations (passive linear optics: beamsplitters and phase-shifters, second order nonlinear optics (or active linear optics): squeezers, along with homodyne or heterodyne detection measurements) and any amount of classical feedforward within the receiver. Under these assumptions, we show that the Gaussian receiver that attains the maximum mutual information is either homodyne detection, heterodyne detection, or time sharing between the two, depending upon the received power level. In other words, our result shows that to exceed the theoretical limit of conventional coherent optical communications, one has to incorporate non-Gaussian, i.e., third or higher-order nonlinear operations in the receiver. Finally we compare our Gaussian receiver limit with experimentally feasible non-Gaussian receivers and show that in the regime of low received photon flux, it is possible to overcome the Gaussian receiver limit by relatively simple non-Gaussian receivers based on photon counting.
We provide a framework for understanding recent experiments on squeezing of a collective atomic pseudo-spin, induced by a homodyne measurement on off-resonant probe light interrogating the atoms. The detection of light decimates the atomic state distribution and we discuss the conditions under which the resulting reduced quantum fluctuations are metrologically relevant. In particular, we consider a dual probe scheme which benefits from a cancelation of classical common mode noise sources such that quantum fluctuations from light and atoms are the main contributions to the detected signal.