Do you want to publish a course? Click here

Metric Learning for Keyword Spotting

316   0   0.0 ( 0 )
 Added by Joon Son Chung
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

The goal of this work is to train effective representations for keyword spotting via metric learning. Most existing works address keyword spotting as a closed-set classification problem, where both target and non-target keywords are predefined. Therefore, prevailing classifier-based keyword spotting systems perform poorly on non-target sounds which are unseen during the training stage, causing high false alarm rates in real-world scenarios. In reality, keyword spotting is a detection problem where predefined target keywords are detected from a variety of unknown sounds. This shares many similarities to metric learning problems in that the unseen and unknown non-target sounds must be clearly differentiated from the target keywords. However, a key difference is that the target keywords are known and predefined. To this end, we propose a new method based on metric learning that maximises the distance between target and non-target keywords, but also learns per-class weights for target keywords `a la classification objectives. Experiments on the Google Speech Commands dataset show that our method significantly reduces false alarms to unseen non-target keywords, while maintaining the overall classification accuracy.



rate research

Read More

Smart audio devices are gated by an always-on lightweight keyword spotting program to reduce power consumption. It is however challenging to design models that have both high accuracy and low latency for accurate and fast responsiveness. Many efforts have been made to develop end-to-end neural networks, in which depthwise separable convolutions, temporal convolutions, and LSTMs are adopted as building units. Nonetheless, these networks designed with human expertise may not achieve an optimal trade-off in an expansive search space. In this paper, we propose to leverage recent advances in differentiable neural architecture search to discover more efficient networks. Our searched model attains 97.2% top-1 accuracy on Google Speech Command Dataset v1 with only nearly 100K parameters.
Deep neural networks provide effective solutions to small-footprint keyword spotting (KWS). However, if training data is limited, it remains challenging to achieve robust and highly accurate KWS in real-world scenarios where unseen sounds that are out of the training data are frequently encountered. Most conventional methods aim to maximize the classification accuracy on the training set, without taking the unseen sounds into account. To enhance the robustness of the deep neural networks based KWS, in this paper, we introduce a new loss function, named the maximization of the area under the receiver-operating-characteristic curve (AUC). The proposed method not only maximizes the classification accuracy of keywords on the closed training set, but also maximizes the AUC score for optimizing the performance of non-keyword segments detection. Experimental results on the Google Speech Commands dataset v1 and v2 show that our method achieves new state-of-the-art performance in terms of most evaluation metrics.
162 - Li Wang , Rongzhi Gu , Nuo Chen 2021
Keyword Spotting (KWS) remains challenging to achieve the trade-off between small footprint and high accuracy. Recently proposed metric learning approaches improved the generalizability of models for the KWS task, and 1D-CNN based KWS models have achieved the state-of-the-arts (SOTA) in terms of model size. However, for metric learning, due to data limitations, the speech anchor is highly susceptible to the acoustic environment and speakers. Also, we note that the 1D-CNN models have limited capability to capture long-term temporal acoustic features. To address the above problems, we propose to utilize text anchors to improve the stability of anchors. Furthermore, a new type of model (LG-Net) is exquisitely designed to promote long-short term acoustic feature modeling based on 1D-CNN and self-attention. Experiments are conducted on Google Speech Commands Dataset version 1 (GSCDv1) and 2 (GSCDv2). The results demonstrate that the proposed text anchor based metric learning method shows consistent improvements over speech anchor on representative CNN-based models. Moreover, our LG-Net model achieves SOTA accuracy of 97.67% and 96.79% on two datasets, respectively. It is encouraged to see that our lighter LG-Net with only 74k parameters obtains 96.82% KWS accuracy on the GSCDv1 and 95.77% KWS accuracy on the GSCDv2.
We consider feature learning for efficient keyword spotting that can be applied in severely under-resourced settings. The objective is to support humanitarian relief programmes by the United Nations in parts of Africa in which almost no language resources are available. For rapid development in such languages, we rely on a small, easily-compiled set of isolated keywords. These keyword templates are applied to a large corpus of in-domain but untranscribed speech using dynamic time warping (DTW). The resulting DTW alignment scores are used to train a convolutional neural network (CNN) which is orders of magnitude more computationally efficient and suitable for real-time application. We optimise this neural network keyword spotter by identifying robust acoustic features in this almost zero-resource setting. First, we incorporate information from well-resourced but unrelated languages using a multilingual bottleneck feature (BNF) extractor. Next, we consider features extracted from an autoencoder (AE) trained on in-domain but untranscribed data. Finally, we consider correspondence autoencoder (CAE) features which are fine-tuned on the small set of in-domain labelled data. Experiments in South African English and Luganda, a low-resource language, show that BNF and CAE features achieve a 5% relative performance improvement over baseline MFCCs. However, using BNFs as input to the CAE results in a more than 27% relative improvement over MFCCs in ROC area-under-the-curve (AUC) and more than twice as many top-10 retrievals. We show that, using these features, the CNN-DTW keyword spotter performs almost as well as the DTW keyword spotter while outperforming a baseline CNN trained only on the keyword templates. The CNN-DTW keyword spotter using BNF-derived CAE features represents an efficient approach with competitive performance suited to rapid deployment in a severely under-resourced scenario.
The objective of this paper is open-set speaker recognition of unseen speakers, where ideal embeddings should be able to condense information into a compact utterance-level representation that has small intra-speaker and large inter-speaker distance. A popular belief in speaker recognition is that networks trained with classification objectives outperform metric learning methods. In this paper, we present an extensive evaluation of most popular loss functions for speaker recognition on the VoxCeleb dataset. We demonstrate that the vanilla triplet loss shows competitive performance compared to classification-based losses, and those trained with our proposed metric learning objective outperform state-of-the-art methods.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا