Do you want to publish a course? Click here

Universalization of any adversarial attack using very few test examples

81   0   0.0 ( 0 )
 Added by Sandesh Kamath K
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Deep learning models are known to be vulnerable not only to input-dependent adversarial attacks but also to input-agnostic or universal adversarial attacks. Dezfooli et al. cite{Dezfooli17,Dezfooli17anal} construct universal adversarial attack on a given model by looking at a large number of training data points and the geometry of the decision boundary near them. Subsequent work cite{Khrulkov18} constructs universal attack by looking only at test examples and intermediate layers of the given model. In this paper, we propose a simple universalization technique to take any input-dependent adversarial attack and construct a universal attack by only looking at very few adversarial test examples. We do not require details of the given model and have negligible computational overhead for universalization. We theoretically justify our universalization technique by a spectral property common to many input-dependent adversarial perturbations, e.g., gradients, Fast Gradient Sign Method (FGSM) and DeepFool. Using matrix concentration inequalities and spectral perturbation bounds, we show that the top singular vector of input-dependent adversarial directions on a small test sample gives an effective and simple universal adversarial attack. For VGG16 and VGG19 models trained on ImageNet, our simple universalization of Gradient, FGSM, and DeepFool perturbations using a test sample of 64 images gives fooling rates comparable to state-of-the-art universal attacks cite{Dezfooli17,Khrulkov18} for reasonable norms of perturbation.



rate research

Read More

In this work we propose Energy Attack, a transfer-based black-box $L_infty$-adversarial attack. The attack is parameter-free and does not require gradient approximation. In particular, we first obtain white-box adversarial perturbations of a surrogate model and divide these perturbations into small patches. Then we extract the unit component vectors and eigenvalues of these patches with principal component analysis (PCA). Base on the eigenvalues, we can model the energy distribution of adversarial perturbations. We then perform black-box attacks by sampling from the perturbation patches according to their energy distribution, and tiling the sampled patches to form a full-size adversarial perturbation. This can be done without the available access to victim models. Extensive experiments well demonstrate that the proposed Energy Attack achieves state-of-the-art performance in black-box attacks on various models and several datasets. Moreover, the extracted distribution is able to transfer among different model architectures and different datasets, and is therefore intrinsic to vision architectures.
159 - Tao Bai , Jun Zhao , Jinlin Zhu 2020
Deep neural networks (DNNs) are vulnerable to adversarial examples, which are crafted by adding imperceptible perturbations to inputs. Recently different attacks and strategies have been proposed, but how to generate adversarial examples perceptually realistic and more efficiently remains unsolved. This paper proposes a novel framework called Attack-Inspired GAN (AI-GAN), where a generator, a discriminator, and an attacker are trained jointly. Once trained, it can generate adversarial perturbations efficiently given input images and target classes. Through extensive experiments on several popular datasets eg MNIST and CIFAR-10, AI-GAN achieves high attack success rates and reduces generation time significantly in various settings. Moreover, for the first time, AI-GAN successfully scales to complicated datasets eg CIFAR-100 with around $90%$ success rates among all classes.
We introduce two challenging datasets that reliably cause machine learning model performance to substantially degrade. The datasets are collected with a simple adversarial filtration technique to create datasets with limited spurious cues. Our datasets real-world, unmodified examples transfer to various unseen models reliably, demonstrating that computer vision models have shared weaknesses. The first dataset is called ImageNet-A and is like the ImageNet test set, but it is far more challenging for existing models. We also curate an adversarial out-of-distribution detection dataset called ImageNet-O, which is the first out-of-distribution detection dataset created for ImageNet models. On ImageNet-A a DenseNet-121 obtains around 2% accuracy, an accuracy drop of approximately 90%, and its out-of-distribution detection performance on ImageNet-O is near random chance levels. We find that existing data augmentation techniques hardly boost performance, and using other public training datasets provides improvements that are limited. However, we find that improvements to computer vision architectures provide a promising path towards robust models.
CAPTCHA (Completely Automated Public Truing test to tell Computers and Humans Apart) is a widely used technology to distinguish real users and automated users such as bots. However, the advance of AI technologies weakens many CAPTCHA tests and can induce security concerns. In this paper, we propose a user-friendly text-based CAPTCHA generation method named Robust Text CAPTCHA (RTC). At the first stage, the foregrounds and backgrounds are constructed with randomly sampled font and background images, which are then synthesized into identifiable pseudo adversarial CAPTCHAs. At the second stage, we design and apply a highly transferable adversarial attack for text CAPTCHAs to better obstruct CAPTCHA solvers. Our experiments cover comprehensive models including shallow models such as KNN, SVM and random forest, various deep neural networks and OCR models. Experiments show that our CAPTCHAs have a failure rate lower than one millionth in general and high usability. They are also robust against various defensive techniques that attackers may employ, including adversarial training, data pre-processing and manual tagging.
Deep neural networks are vulnerable to adversarial examples that are crafted by imposing imperceptible changes to the inputs. However, these adversarial examples are most successful in white-box settings where the model and its parameters are available. Finding adversarial examples that are transferable to other models or developed in a black-box setting is significantly more difficult. In this paper, we propose the Direction-Aggregated adversarial attacks that deliver transferable adversarial examples. Our method utilizes aggregated direction during the attack process for avoiding the generated adversarial examples overfitting to the white-box model. Extensive experiments on ImageNet show that our proposed method improves the transferability of adversarial examples significantly and outperforms state-of-the-art attacks, especially against adversarial robust models. The best averaged attack success rates of our proposed method reaches 94.6% against three adversarial trained models and 94.8% against five defense methods. It also reveals that current defense approaches do not prevent transferable adversarial attacks.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا