Three-dimensional cytoplasmic calcium propagation with boundaries


Abstract in English

Ca$^{2+}$ plays an important role in cell signal transduction. Its intracellular propagation is the most basic process of Ca$^{2+}$ signaling, such as calcium wave and double messenger system. In this work, with both numerical simulation and mean field ansatz, the 3-dimensional probability distribution of Ca$^{2+}$, which is read out by phosphorylation, is studied in two scenarios with boundaries. The coverage of distribution of Ca$^{2+}$ is found at an order of magnitude of $mu$m, which is consistent with experimental observed calcium spike and wave. Our results suggest that the double messenger system may occur in the ER-PM junction to acquire great efficiency. The buffer effect of kinase is also discussed by calculating the average position of phosphorylations and free Ca$^{2+}$. The results are helpful to understand the mechanism of Ca$^{2+}$ signaling.

Download