Do you want to publish a course? Click here

MicroNet for Efficient Language Modeling

137   0   0.0 ( 0 )
 Added by Zhongxia Yan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

It is important to design compact language models for efficient deployment. We improve upon recent advances in both the language modeling domain and the model-compression domain to construct parameter and computation efficient language models. We use an efficient transformer-based architecture with adaptive embedding and softmax, differentiable non-parametric cache, Hebbian softmax, knowledge distillation, network pruning, and low-bit quantization. In this paper, we provide the winning solution to the NeurIPS 2019 MicroNet Challenge in the language modeling track. Compared to the baseline language model provided by the MicroNet Challenge, our model is 90 times more parameter-efficient and 36 times more computation-efficient while achieving the required test perplexity of 35 on the Wikitext-103 dataset. We hope that this work will aid future research into efficient language models, and we have released our full source code at https://github.com/mit-han-lab/neurips-micronet.

rate research

Read More

Recurrent neural networks have proved to be an effective method for statistical language modeling. However, in practice their memory and run-time complexity are usually too large to be implemented in real-time offline mobile applications. In this paper we consider several compression techniques for recurrent neural networks including Long-Short Term Memory models. We make particular attention to the high-dimensional output problem caused by the very large vocabulary size. We focus on effective compression methods in the context of their exploitation on devices: pruning, quantization, and matrix decomposition approaches (low-rank factorization and tensor train decomposition, in particular). For each model we investigate the trade-off between its size, suitability for fast inference and perplexity. We propose a general pipeline for applying the most suitable methods to compress recurrent neural networks for language modeling. It has been shown in the experimental study with the Penn Treebank (PTB) dataset that the most efficient results in terms of speed and compression-perplexity balance are obtained by matrix decomposition techniques.
Masked language modeling (MLM) is one of the key sub-tasks in vision-language pretraining. In the cross-modal setting, tokens in the sentence are masked at random, and the model predicts the masked tokens given the image and the text. In this paper, we observe several key disadvantages of MLM in this setting. First, as captions tend to be short, in a third of the sentences no token is sampled. Second, the majority of masked tokens are stop-words and punctuation, leading to under-utilization of the image. We investigate a range of alternative masking strategies specific to the cross-modal setting that address these shortcomings, aiming for better fusion of text and image in the learned representation. When pre-training the LXMERT model, our alternative masking strategies consistently improve over the original masking strategy on three downstream tasks, especially in low resource settings. Further, our pre-training approach substantially outperforms the baseline model on a prompt-based probing task designed to elicit image objects. These results and our analysis indicate that our method allows for better utilization of the training data.
The quality of automatic speech recognition (ASR) is critical to Dialogue Systems as ASR errors propagate to and directly impact downstream tasks such as language understanding (LU). In this paper, we propose multi-task neural approaches to perform contextual language correction on ASR outputs jointly with LU to improve the performance of both tasks simultaneously. To measure the effectiveness of this approach we used a public benchmark, the 2nd Dialogue State Tracking (DSTC2) corpus. As a baseline approach, we trained task-specific Statistical Language Models (SLM) and fine-tuned state-of-the-art Generalized Pre-training (GPT) Language Model to re-rank the n-best ASR hypotheses, followed by a model to identify the dialog act and slots. i) We further trained ranker models using GPT and Hierarchical CNN-RNN models with discriminatory losses to detect the best output given n-best hypotheses. We extended these ranker models to first select the best ASR output and then identify the dialogue act and slots in an end to end fashion. ii) We also proposed a novel joint ASR error correction and LU model, a word confusion pointer network (WCN-Ptr) with multi-head self-attention on top, which consumes the word confusions populated from the n-best. We show that the error rates of off the shelf ASR and following LU systems can be reduced significantly by 14% relative with joint models trained using small amounts of in-domain data.
Transformers are ubiquitous in Natural Language Processing (NLP) tasks, but they are difficult to be deployed on hardware due to the intensive computation. To enable low-latency inference on resource-constrained hardware platforms, we propose to design Hardware-Aware Transformers (HAT) with neural architecture search. We first construct a large design space with $textit{arbitrary encoder-decoder attention}$ and $textit{heterogeneous layers}$. Then we train a $textit{SuperTransformer}$ that covers all candidates in the design space, and efficiently produces many $textit{SubTransformers}$ with weight sharing. Finally, we perform an evolutionary search with a hardware latency constraint to find a specialized $textit{SubTransformer}$ dedicated to run fast on the target hardware. Extensive experiments on four machine translation tasks demonstrate that HAT can discover efficient models for different hardware (CPU, GPU, IoT device). When running WMT14 translation task on Raspberry Pi-4, HAT can achieve $textbf{3}times$ speedup, $textbf{3.7}times$ smaller size over baseline Transformer; $textbf{2.7}times$ speedup, $textbf{3.6}times$ smaller size over Evolved Transformer with $textbf{12,041}times$ less search cost and no performance loss. HAT code is https://github.com/mit-han-lab/hardware-aware-transformers.git
Exposure bias describes the phenomenon that a language model trained under the teacher forcing schema may perform poorly at the inference stage when its predictions are conditioned on its previous predictions unseen from the training corpus. Recently, several generative adversarial networks (GANs) and reinforcement learning (RL) methods have been introduced to alleviate this problem. Nonetheless, a common issue in RL and GANs training is the sparsity of reward signals. In this paper, we adopt two simple strategies, multi-range reinforcing, and multi-entropy sampling, to amplify and denoise the reward signal. Our model produces an improvement over competing models with regards to BLEU scores and road exam, a new metric we designed to measure the robustness against exposure bias in language models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا