Do you want to publish a course? Click here

The effects of a background potential in star cluster evolution: a delay in the relaxation time-scale and runaway collision processes

107   0   0.0 ( 0 )
 Added by Basti\\'an Reinoso
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

Runaway stellar collisions in dense star clusters are invoked to explain the presence of very massive stars or blue stragglers in the center of those systems. This process has also been explored for the first star clusters in the Universe and shown to yield stars that may collapse at some points into an intermediate mass black hole. Although the early evolution of star clusters requires the explicit modeling of the gas out of which the stars form, these calculations would be extremely time-consuming and often the effects of the gas can be accurately treated by including a background potential to account for the extra gravitational force. We apply this approximation to model the early evolution of the first dense star clusters formed in the Universe by performing $N$-body simulations, our goal is to understand how the additional gravitational force affects the growth of a very massive star through stellar mergers in the central parts of the star cluster. Our results show that the background potential increases the velocities of the stars, causing an overall delay in the evolution of the clusters and in the runaway growth of a massive star at the center. The population of binary stars is lower due to the increased kinetic energy of the stars, initially reducing the number of stellar collisions, and we show that relaxation processes are also affected. Despite these effects, the external potential enhances the mass of the merger product by a factor $sim$2 if the collisions are maintained for long times.



rate research

Read More

In the cores of young dense star clusters repeated stellar collisions involving the same object can occur, which has been suggested to lead to the formation of an intermediate-mass black hole. In order to verify this scenario we compute the detailed evolution of the merger remnant of three sequences. We follow the evolution until the onset of carbon burning and estimate the final remnant mass to determine the ultimate fate of a runaway merger sequence. We use a detailed stellar evolution code to follow the evolution of the collision product. At each collision, we mix the two colliding stars, taking account of mass loss during the collision. During the stellar evolution we apply mass loss rates from the literature, as appropriate for the evolutionary stage of the merger remnant. We compute models for high ($Z=0.02$) and low ($Z=0.001$) metallicity to quantify metallicity effects. We find that the merger remnant becomes a Wolf-Rayet star before the end of core hydrogen burning. Mass loss from stellar winds dominates over the mass increase due to repeated mergers for all three merger sequences that we consider. In none of our high metallicity models an intermediate-mass black hole is formed, instead our models have a mass of 10--14 Msun{} at the onset of carbon burning. For low metallicity we expect the final remnant of the merger sequence to explode as a pair creation supernova. We find that our metal-rich models become inflated as a result of developing an extended low-density envelope. This may increase the probability of further collisions, but self-consistent $N$-body calculations with detailed evolution of runaway mergers are required to verify this.
119 - F. Demichelis 1998
We use computer simulation to investigate the topology of the potential energy $V({{bf R}})$ and to search for doublewell potentials (DWP) in a model glass . By a sequence of Newtonian and dissipative dynamics we find different minima of $V({{bf R}})$ and the energy profile along the least action paths joining them. At variance with previous suggestions, we find that the parameters describing the DWPs are correlated among each others. Moreover, the trajectory of the system in the 3$N$-d configurational phase space follows a quasi-1-d manifold. The motion parallel to the path is characterized by jumps between minima, and is nearly uncorrelated from the orthogonal, harmonic, dynamics.
We present new large field observations of molecular clouds with NANTEN2 toward the super star cluster NGC3603 in the transitions 12CO(J=2-1, J=1-0) and 13CO(J=2-1, J=1-0). We suggest that two molecular clouds at 13 km s-1 and 28 km s-1 are associated with NGC3603 as evidenced by higher temperatures toward the H II region as well as morphological correspondence. The mass of the clouds is too small to gravitationally bind them, given their relative motion of ~20 km s-1. We suggest that the two clouds collided with each other a Myr ago to trigger the formation of the super star cluster. This scenario is able to explain the origin of the highest mass stellar population in the cluster which is as young as a Myr and is segregated within the central sub-pc of the cluster. This is the second super star cluster along side Westerlund2 where formation may have been triggered by a cloud-cloud collision.
Recent improvements in the age dating of stellar populations and single stars allow us to study the ages and abundance of stars and galaxies with unprecedented accuracy. We here compare the relation between age and alpha-element abundances for stars in the solar neighborhood to that of local, early-type galaxies. We find both relations to be very similar. Both fall into two regimes with a flat slope for ages younger than ~9 Gyr and a steeper slope for ages older than that value. This quantitative similarity seems surprising, given the different types of galaxies and scales involved. For the sample of early-type galaxies we also show that the data are inconsistent with literature delay time distributions of either single or double Gaussian shape. The data are consistent with a power law delay time distribution. We thus confirm that the delay time distribution inferred for the Milky Way from chemical evolution arguments also must apply to massive early-type galaxies. We also offer a tentative explanation for the seeming universality of the age-[alpha/Fe] relation as the manifestation of averaging of different stellar populations with varying chemical evolution histories.
Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا