Do you want to publish a course? Click here

Tracking the evolutionary stage of protostars by the abundances of astrophysical ices

71   0   0.0 ( 0 )
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The physical evolution of Young Stellar Objects (YSOs) is accompanied by an enrichment of the molecular complexity, mainly triggered by the heating and energetic processing of the astrophysical ices. In this paper, a study of how the ice column density varies across the protostellar evolution has been performed. Tabulated data of H$_2$O, CO$_2$, CH$_3$OH, HCOOH observed by ground- and space-based telescopes toward 27 early-stage YSOs were taken from the literature. The observational data shows that ice column density and spectral index ($alpha$), used to classify the evolutionary stage, are well correlated. A 2D continuum radiative transfer simulation containing bare and grains covered by ices at different levels of cosmic-ray processing were used to calculate the Spectral Energy Distributions (SEDs) in different angle inclinations between face-on and edge-on configuration. The H$_2$O:CO$_2$ ice mixture was used to address the H$_2$O and CO$_2$ column density variation whereas the CH$_3$OH and HCOOH are a byproduct of the virgin ice after the energetic processing. The simulated spectra were used to calculate the ice column densities of YSOs in an evolutionary sequence. As a result, the models show that the ice column density variation of HCOOH with $alpha$ can be justified by the envelope dissipation and ice energetic processing. On the other hand, the ice column densities are mostly overestimated in the cases of H$_2$O, CO$_2$ and CH$_3$OH, even though the physical and cosmic-ray processing effects are taken into account.



rate research

Read More

119 - G. A. Carvalho , S. Pilling 2020
In this study, we employed broadband X-rays ($6-2000$ eV) to irradiate the frozen acetone CH$_3$COCH$_3$, at the temperature of 12 K, with different photon fluences up to $2.7times 10^{18}$ photons cm$^{-2}$. Here, we consider acetone as a representative complex organic molecule (COM) present on interstellar ice grains. The experiments were conduced at the Brazilian synchrotron facility (LNLS/CNPEN) employing infrared spectroscopy (FTIR) to monitor chemical changes induced by radiation in the ice sample. We determined the effective destruction cross-section of the acetone molecule and the effective formation cross-section for daughter species. Chemical equilibrium, obtained for fluence $2times 10^{18}$ photons cm$^{-2}$, and molecular abundances at this stage were determined, which also includes the estimates for the abundance of unknown molecules, produced but not detected, in the ice. Timescales for ices, at hypothetical snow line distances, to reach chemical equilibrium around several compact and main-sequence X-ray sources are given. We estimate timescales of 18 days, 3.6 and 1.8 months, $1.4times 10^9-6times 10^{11}$ years, 600 and $1.2times 10^7$ years, and $10^7$ years, for the Sun at 5 AU, for O/B stars at 5 AU, for white dwarfs at 1 LY, for the Crab pulsar at 2.25 LY, for Vela pulsar at 2.25 LY, and for Sagittarius A* at 3 LY, respectively. This study improves our current understanding about radiation effects on the chemistry of frozen material, in particular, focusing for the first time, the effects of X-rays produced by compact objects in their eventual surrounding ices.
We model the ALMA and VLA millimeter radial profiles of the disk around HL Tau to constrain the properties of the dust grains. We adopt the disk evolutionary models of Lynden-Bell & Pringle and calculate their temperature and density structure and emission. These disks are heated by the internal viscosity and irradiated by the central star and a warm envelope. We consider a dust size distribution $n(a) da propto a^{-3.5} da $, and vary the maximum grain size in the atmosphere and the midplane, $a_{rm max}=100 mu$m, 1 mm, and 1cm. We also include dust settling and vary the dust-to-gas mass ratio from 1 to 9 times the ISM value. We find that the models that can fit the observed level of emission along the profiles at all wavelengths have an atmosphere with a maximum grain size $a_{rm max} = 100 mu$m, and a midplane with $a_{rm max}=1$ cm. The disk substructure, with a deficit of emission in the gaps, can be due to dust properties in these regions that are different from those in the rings. We test an opacity effect (different $a_{rm max}$) and a dust mass deficit (smaller dust-to-gas mass ratio) in the gaps. We find that the emission profiles are better reproduced by models with a dust deficit in the gaps, although a combined effect is also possible. These models have a global dust-to-gas mass ratio twice the ISM value, needed to reach the level of emission of the 7.8 mm VLA profile.
(Abridged) The terrestrial planets, comets, and meteorites are significantly enriched in 15N compared to the Sun and Jupiter. While the solar and jovian nitrogen isotope ratio is believed to represent the composition of the protosolar nebula, a still unidentified process has caused 15N-enrichment in the solids. Several mechanisms have been proposed to explain the variations, including chemical fractionation. However, observational results that constrain the fractionation models are scarce. While there is evidence of 15N-enrichment in prestellar cores, it is unclear how the signature evolves into the protostellar phases. Our aim is to measure the 14N/15N ratio around three nearby, embedded low-to-intermediate-mass protostars. Isotopologues of HCN and HNC were used to probe the 14N/15N ratio. A selection of H13CN, HC15N, HN13C, and H15NC transitions was observed with the APEX telescope. The 14N/15N ratios were derived from the integrated intensities assuming a standard 12C/13C ratio. The assumption of optically thin emission was verified using radiative transfer modeling and hyperfine structure fitting. Two sources, IRAS 16293A and R CrA IRS7B, show 15N-enrichment by a factor of around 1.5-2.5 in both HCN and HNC with respect to the solar composition. Solar composition cannot be excluded for the third source, OMC-3 MMS6. Furthermore, there are indications of a trend toward increasing 14N/15N ratios with increasing outer envelope temperature. The enhanced 15N abundances in HCN and HNC found in two Class~0 sources (14N/15N of 160-290) and the tentative trend toward a temperature-dependent 14N/15N ratio are consistent with the chemical fractionation scenario, but 14N/15N ratios from additional tracers are indispensable for testing the models. Spatially resolved observations are needed to distinguish between chemical fractionation and isotope-selective photochemistry.
77 - L. Podio , B. Tabone , C. Codella 2020
As a part of the CALYPSO large programme, we constrain the properties of protostellar jets and outflows in a sample of 21 Class 0 protostars with internal luminosities, Lint, from 0.035 to 47 Lsun. We analyse high angular resolution (~0.5-1) IRAM PdBI observations in CO (2-1), SO ($5_6-4_5$), and SiO (5-4). CO (2-1), which probes outflowing gas, is detected in all the sources (for the first time in SerpS-MM22 and SerpS-MM18b). Collimated high-velocity jets in SiO (5-4) are detected in 67% of the sources (for the first time in IRAS4B2, IRAS4B1, L1448-NB, SerpS-MM18a), and 77% of these also show jet/outflow emission in SO ($5_6-4_5$). In 5 sources (24% of the sample) SO ($5_6-4_5$) probes the inner envelope and/or the disk. The CALYPSO survey shows that the outflow phenomenon is ubiquitous and that the detection rate of high-velocity jets increases with protostellar accretion, with at least 80% of the sources with Lint>1 Lsun driving a jet. The protostellar flows exhibit an onion-like structure, where the SiO jet (opening angle ~10$^o$) is nested into a wider angle SO (~15$^o$) and CO (~25$^o$) outflow. On scales >300 au the SiO jets are less collimated than atomic jets from Class II sources (~3$^o$). Velocity asymmetry between the two jet lobes are detected in one third of the sources, similarly to Class II atomic jets, suggesting that the same launching mechanism is at work. Most of the jets are SiO rich (SiO/H2 from >2.4e-7 to >5e-6), which indicates efficient release of >1%-10% of silicon in gas phase likely in dust-free winds, launched from inside the dust sublimation radius. The mass-loss rates (from ~7e-8 to ~3e-6 Msun/yr) are larger than what was measured for Class II jets. Similarly to Class II sources, the mass-loss rates are ~1%-50% of the mass accretion rates suggesting that the correlation between ejection and accretion in young stars holds from 1e4 yr up to a few Myr.
The volatile composition of a planet is determined by the inventory of gas and ice in the parent disk. The volatile chemistry in the disk is expected to evolve over time, though this evolution is poorly constrained observationally. We present ALMA observations of C18O, C2H, and the isotopologues H13CN, HC15N, and DCN towards five Class 0/I disk candidates. Combined with a sample of fourteen Class II disks presented in Bergner et al. (2019b), this data set offers a view of volatile chemical evolution over the disk lifetime. Our estimates of C18O abundances are consistent with a rapid depletion of CO in the first ~0.5-1 Myr of the disk lifetime. We do not see evidence that C2H and HCN formation are enhanced by CO depletion, possibly because the gas is already quite under-abundant in CO. Further CO depletion may actually hinder their production by limiting the gas-phase carbon supply. The embedded sources show several chemical differences compared to the Class II stage, which seem to arise from shielding of radiation by the envelope (impacting C2H formation and HC15N fractionation) and sublimation of ices from infalling material (impacting HCN and C18O abundances). Such chemical differences between Class 0/I and Class II sources may affect the volatile composition of planet-forming material at different stages in the disk lifetime.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا