No Arabic abstract
With the aim to loosen the entanglement requirements of quantum illumination, we study the performance of a family of Gaussian states at the transmitter, combined with an optimal and joint quantum measurement at the receiver. We find that maximal entanglement is not strictly necessary to achieve quantum advantage over the classical benchmark of a coherent-state transmitter, in both settings of symmetric and asymmetric hypothesis testing. While performing this quantum-classical comparison, we also investigate a suitable regime of parameters for potential short-range radar (or scanner) applications.
The quantum illumination is examined by making use of the three-mode maximally entangled Gaussian state, which involves one signal and two idler beams. It is shown that the quantum Bhattacharyya bound between $rho$ (state for target absence) and $sigma$ (state for target presence) is less than the previous result derived by two-mode Gaussian state when $N_S$, average photon number per signal, is less than $0.295$. This indicates that the quantum illumination with three-mode Gaussian state gives less error probability compared to that with two-mode Gaussian state when $N_S < 0.295$.
We cast the problem of illuminating an object in a noisy environment into a communication protocol. A probe is sent into the environment, and the presence or absence of the object constitutes a signal encoded on the probe. The probe is then measured to decode the signal. We calculate the Holevo information and bounds to the accessible information between the encoded and received signal with two different Gaussian probes---an Einstein-Podolsky-Rosen (EPR) state and a coherent state. We also evaluate the Gaussian discord consumed during the encoding process with the EPR probe. We find that the Holevo quantum advantage, defined as the difference between the Holevo information obtained from the EPR and coherent state probes, is approximately equal to the discord consumed. These quantities become exact in the typical illumination regime of low object reflectivity and low probe energy. Hence we show that discord is the resource responsible for the quantum advantage in Gaussian quantum illumination.
Deterministic GHz-rate single photon sources at room-temperature would be essential components for various quantum applications. However, both the slow intrinsic decay rate and the omnidirectional emission of typical quantum emitters are two obstacles towards achieving such a goal which are hard to overcome simultaneously. Here we solve this challenge by a hybrid approach, using a complex monolithic photonic resonator constructed of a gold nanocone responsible for the rate enhancement, and a circular Bragg antenna for emission directionality. A repeatable process accurately binds quantum dots to the tip of the antenna-embedded nanocone. As a result we achieve simultaneous 20-fold emission rate enhancement and record-high directionality leading to an increase in the observed brightness by a factor as large as 580 (120) into an NA = 0.22 (0.5). We project that such miniaturized on-chip devices can reach photon rates approaching 2.3*10^8 single photons/second thus enabling ultra-fast light-matter interfaces for quantum technologies at ambient conditions.
Quantum technology requires the creation and control over single photons as an important resource. We present a single photon source based on a single molecule which is attached to the end-facet of an optical fiber. To realize a narrow linewidth, the system is cooled down to liquid-helium temperatures. The molecule is optically excited and its fluorescence is collected through the fiber. We have recorded an excitation spectrum, a saturation curve and analyzed the contributions of Raman background fluorescence. This presents to date the crucial limit for the introduced device. The single photon nature is proven by an anti-bunched auto-correlation recording, which also shows coherent Rabi oscillations.
We propose optimal observables for Gaussian illumination to maximize the signal-to-noise ratio, which minimizes the discrimination error between the presence and absence of a low-reflectivity target using Gaussian states. The optimal observables dominantly consist of off-diagonal components of output states, which is implemented with feasible setups. In the quantum regime using a two-mode squeezed vacuum state, the receiver implemented with heterodyne detections outperforms the other feasible receivers, which asymptotically improves the error probability exponent by a factor of two over the classical state bound. In the classical regime using coherent or thermal states, the receiver implemented with photon number difference measurement asymptotically approaches its bound.