No Arabic abstract
Motivated by recent advances in Donaldson-Thomas theory, four-dimensional $mathcal{N}=4$ string-string duality is examined in a reduced rank theory on a less studied BPS sector. In particular we identify candidate partition functions of untwisted quarter-BPS dyons in the heterotic $mathbb{Z}_2$ CHL model by studying the associated chiral genus two partition function, based on the M-theory lift of string webs argument by Dabholkar and Gaiotto. This yields meromorphic Siegel modular forms for the Iwahori subgroup $B(2) subset text{Sp}_4 (mathbb{Z}) $ which generate BPS indices for dyons with untwisted sector electric charge, in contrast to twisted sector dyons counted by a multiplicative lift of twisted-twining elliptic genera known from Mathieu moonshine. The new partition functions are shown to satisfy the expected constraints coming from wall-crossing and S-duality symmetry as well as the black hole entropy based on the Gauss-Bonnet term in the effective action. In these aspects our analysis confirms and extends work of Banerjee, Sen and Srivastava, which only addressed a subset of the untwisted sector dyons considered here. Our results are also compared with recently conjectured formulae of Bryan and Oberdieck for the partition functions of primitive DT invariants of the CHL orbifold $X=( text{K3} times T^2 )/ mathbb{Z}_2$, as suggested by string duality with type IIA theory on $X$.
Three-dimensional string models with half-maximal supersymmetry are believed to be invariant under a large U-duality group which unifies the S and T dualities in four dimensions. We propose an exact, U-duality invariant formula for four-derivative scalar couplings of the form $F(Phi) ( ablaPhi)^4$ in a class of string vacua known as CHL $mathbb{Z}_N$ heterotic orbifolds with $N$ prime, generalizing our previous work which dealt with the case of heterotic string on $T^6$. We derive the Ward identities that $F(Phi)$ must satisfy, and check that our formula obeys them. We analyze the weak coupling expansion of $F(Phi)$, and show that it reproduces the correct tree-level and one-loop contributions, plus an infinite series of non-perturbative contributions. Similarly, the large radius expansion reproduces the exact $F^4$ coupling in four dimensions, including both supersymmetric invariants, plus infinite series of instanton corrections from half-BPS dyons winding around the large circle, and from Taub-NUT instantons. The summation measure for dyonic instantons agrees with the helicity supertrace for half-BPS dyons in 4 dimensions in all charge sectors. In the process we clarify several subtleties about CHL models in $D=4$ and $D=3$, in particular we obtain the exact helicity supertraces for 1/2-BPS dyonic states in all duality orbits.
We construct extremal, spherically symmetric black hole solutions to 4D supergravity with charge assignments that preclude BPS-saturation. In particular, we determine the ground state energy as a function of charges and moduli. We find that the mass of the non-BPS black hole remains that of a marginal bound state of four basic constituents throughout the entire moduli space and that there is always a non-zero gap above the BPS bound.
We study the spontaneous pair production of scalar dyons in the near extremal dyonic Kerr-Newman (KN) black hole, which contains a warped AdS$_3$ structure in the near horizon region. The leading term contribution of the pair production rate and the absorption cross section ratio are also calculated using the Hamilton-Jacobi approach and the thermal interpretation is given. In addition, the holographic dual conformal field theories (CFTs) descriptions of the pair production rate and absorption cross section ratios are analyzed both in the $J$-, $Q$- and $P$-pictures respectively based on the threefold dyonic KN/CFTs dualities.
Motivated by recent studies of supersymmetric black holes, we revisit the phase diagram of AdS black holes, whether BPS or not, with particular emphasis on the role of rotation. We develop BPS thermodynamics systematically and, in many explicit examples, we study its striking similarities with more familiar AdS black holes, as well as some differences. We highlight an important fugacity that preserves BPS saturation but is not captured by the supersymmetric index.
A continuum of monopole, dyon and black hole solutions exist in the Einstein-Yang-Mills theory in asymptotically anti-de Sitter space. Their structure is studied in detail. The solutions are classified by non-Abelian electric and magnetic charges and the ADM mass. The stability of the solutions which have no node in non-Abelian magnetic fields is established. There exist critical spacetime solutions which terminate at a finite radius, and have universal behavior. The moduli space of the solutions exhibits a fractal structure as the cosmological constant approaches zero.