Do you want to publish a course? Click here

Particles and the Universe

170   0   0.0 ( 0 )
 Added by George Lazarides
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The early stages of the universe evolution are discussed according to the hot big bang model and the grand unified theories. The shortcomings of big bang are summarized and their resolution by inflationary cosmology is sketched. Cosmological inflation, the subsequent oscillation and decay of the inflaton field, and the resulting reheating of the universe are studied in some detail. The density perturbations produced by inflation and the temperature fluctuations of the cosmic microwave background radiation are introduced. Baryogenesis via non-thermal leptogenesis is analyzed and dark energy and matter in the universe are presented. Quantum gravity and string theory are very briefly introduced. The problem of initial conditions for inflation is discussed in the light of string theory and the possibly detectable primordial gravity waves from inflation are mentioned.



rate research

Read More

In this work an update of the cosmological role and place of the chiral tensor particles in the Universe history is provided. We discuss an extended model with chiral tensor particles. The influence of these particles on the early Universe evolution is studied. Namely, the increase of the Universe expansion rate caused by the additional particles in this extended model is calculated, their characteristic interactions with the particles of the hot Universe plasma are studied and the corresponding times of their creation, scattering, annihilation and decay are estimated for accepted values of their masses and couplings, based on the recent experimental constraints. The period of abundant presence of these particles in the Universe evolution is determined.
We consider a cosmological scenario in which the very early Universe experienced a transient epoch of matter domination due to the formation of a large population of primordial black holes (PBHs) with masses $M lesssim 10^{9},textrm{g}$, that evaporate before Big Bang nucleosynthesis. In this context, Hawking radiation would be a non-thermal mechanism to produce a cosmic background of axion-like particles (ALPs). We assume the minimal scenario in which these ALPs couple only with photons. In the case of ultralight ALPs ($m_a lesssim 10^{-9},textrm{eV}$) the cosmic magnetic fields might trigger ALP-photon
The low frequency part of the gravitational wave spectrum generated by local physics, such as a phase transition or parametric resonance, is largely fixed by causality, offering a clean window into the early Universe. In this work, this low frequency end of the spectrum is analyzed with an emphasis on a physical understanding, such as the suppressed production of gravitational waves due to the excitation of an over-damped harmonic oscillator and their enhancement due to being frozen out while outside the horizon. Due to the difference between sub-horizon and super-horizon physics, it is inevitable that there will be a distinct spectral feature that could allow for the direct measurement of the conformal Hubble rate at which the phase transition occurred. As an example, free-streaming particles (such as the gravity waves themselves) present during the phase transition affect the production of super-horizon modes. This leads to a steeper decrease in the spectrum at low frequencies as compared to the well-known causal $k^3$ super-horizon scaling of stochastic gravity waves. If a sizable fraction of the energy density is in free-streaming particles, they even lead to the appearance of oscillatory features in the spectrum. If the universe was not radiation dominated when the waves were generated, a similar feature also occurs at the transition between sub-horizon to super-horizon causality. These features are used to show surprising consequences, such as the fact that a period of matter domination following the production of gravity waves actually increases their power spectrum at low frequencies.
We show that the non-integer effective number of neutrinos $N^{mathrm{eff}}_ u$ can be understood as an effect of lepton $L$ asymmetry in the early Universe carried by the Dirac neutrino cosmic background. We show that $N_ u^{mathrm{eff}}=3.36pm0.34$ (CMB only) and $N_ u^{mathrm{eff}}= 3.62pm0.25$ (CMB and $H_0$) require a ratio between baryon number $B$ and lepton number to be $1.16 times 10^{-9}leqslant B/|L|leqslant 1.51 times 10^{-9}$. These values are close to the baryon-to-photon ratio $0.57times 10^{-9}leqslant B/N_gamma leqslant 0.67times10^{-9}$. Thus instead of the usual $|L|ll N_gamma$ and $Bsimeq |L|$, we propose to use $0.4 leqslant |L|/N_gammaleqslant 0.52$ and $Bll|L|$ as another natural choice, which resolves the tension between Planck-CMB and $H_0$ and leads to a non-integer value of $N_ u^{mathrm{eff}}>3$.
179 - Pierre Brun 2013
The high-energy Universe is potentially a great laboratory for searching new light bosons such as axion-like particles (ALPs). Cosmic sources are indeed the scene of violent phenomena that involve strong magnetic field and/or very long baselines, where the effects of the mixing of photons with ALPs could lead to observable effects. Two examples are archetypal of this fact, that are the Universe opacity to gamma-rays and the imprints of astrophysical magnetic turbulence in the energy spectra of high-energy sources. In the first case, hints for the existence of ALPs can be proposed whereas the second one is used to put constraints on the ALP mass and coupling to photons.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا