Do you want to publish a course? Click here

Dust Reverberation Mapping of Type 2 AGN NGC 2110 Realized with X-ray and 3-5 $mu$m IR monitoring

133   0   0.0 ( 0 )
 Added by Hirofumi Noda
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

The dust reverberation mapping is one of powerful methods to investigate the structure of the dusty tori in AGNs, and it has been performed on more than a hundred type 1 AGNs. However, no clear results have been reported on type 2 AGNs because their strong optical-UV extinction completely hides their accretion disc emission. Here we focus on an X-ray-bright type 2 AGN, NGC 2110, and utilize 2-20 keV X-ray variation monitored by MAXI to trace disc emission, instead of optical-UV variation. Comparing it with light curves in the WISE infrared (IR) W1 band ($lambda = 3.4$ $mu$m) and W2 band ($lambda = 4.6$ $mu$m) with cross-correlation analyses, we found candidates of the dust reverberation time lag at $sim60$ days, $sim130$ days, and $sim1250$ days between the X-ray flux variation and those of the IR bands. By examining the best-fitting X-ray and IR light curves with the derived time lags, we found that the time lag of $sim130$ days is most favoured. With this time lag, the relation between the time lag and luminosity of NGC 2110 is consistent with those in type 1 AGNs, suggesting that the dust reverberation in NGC 2110 mainly originates in hot dust in the torus innermost region, the same as in type 1 AGNs. As demonstrated by the present study, X-ray and IR simultaneous monitoring can be a promising tool to perform the dust reverberation mapping on type 2 AGNs.



rate research

Read More

319 - G. Fabbiano , A. Paggi , M. Elvis 2019
A recent ALMA study of the Seyfert 2 Active Galactic Nucleus (AGN) NGC 2110 by Rosario et al. (2019) has reported a remarkable lack of CO 2-1 emission from the circumnuclear region, where optical lines and H2 emission are observed, leading to the suggestion of excitation of the molecular clouds by the AGN. Since interaction with X-ray photons could be the cause of this excitation, we have searched the archival Chandra data for corroborating evidence. We report an extra-nuclear ~1 (~170 pc) feature found in the soft (<1.0 keV) Chandra data of the Seyfert 2 Active Galactic Nucleus (AGN) NGC 2110. This feature is elongated to the north of the nucleus and its shape matches well that of the optical lines and H2 emission observed in this region, which is devoid of CO 2-1 emission. The Chandra image completes the emerging picture of a multi-phase circumnuclear medium excited by the X-rays from the AGN, with dense warm molecular clouds emitting in H2 but depleted of CO 2-1 emission.
Reverberation-mapping-based scaling relations are often used to estimate the masses of black holes from single-epoch spectra of AGN. While the radius-luminosity relation that is the basis of these scaling relations is determined using reverberation mapping of the H$beta$ line in nearby AGN, the scaling relations are often extended to use other broad emission lines, such as MgII, in order to get black hole masses at higher redshifts when H$beta$ is redshifted out of the optical waveband. However, there is no radius-luminosity relation determined directly from MgII. Here, we present an attempt to perform reverberation mapping using MgII in the well-studied nearby Seyfert 1, NGC 5548. We used Swift to obtain UV grism spectra of NGC 5548 once every two days from April to September 2013. Concurrent photometric UV monitoring with Swift provides a well determined continuum lightcurve that shows strong variability. The MgII emission line, however, is not strongly correlated with the continuum variability, and there is no significant lag between the two. We discuss these results in the context of using MgII scaling relations to estimate high-redshift black hole masses.
We report spatial distributions of the Fe-K$alpha$ line at 6.4 keV and the CO($J$ = 2--1) line at 230.538 GHz in NGC 2110, which are respectively revealed by $Chandra$ and ALMA at $approx$ 0.5 arcsec. A $Chandra$ 6.2--6.5 keV-to-3.0--6.0 keV image suggests that the Fe-K$alpha$ emission extends preferentially in a northwest-to-southeast direction out to $sim$ 3 arcsec, or 500 pc, on each side. Spatially-resolved spectral analyses support this by finding significant Fe-K$alpha$ emission lines only in northwest and southeast regions. Moreover, their equivalent widths are found $sim$ 1.5 keV, indicative for the fluorescence by nuclear X-ray irradiation as the physical origin. By contrast, CO($J$ = 2--1) emission is weak therein. For quantitative discussion, we derive ionization parameters by following an X-ray dominated region (XDR) model. We then find them high enough to interpret the weakness as the result of X-ray dissociation of CO and/or H$_2$. Another possibility also remains that CO molecules follow a super-thermal distribution, resulting in brighter emission in higher-$J$ lines. Further follow-up observations are encouraged to draw a conclusion on what predominantly changes the inter-stellar matter properties, and whether the X-ray irradiation eventually affects the surrounding star formation as an AGN feedback.
Recent intensive Swift monitoring of the Seyfert 1 galaxy NGC 5548 yielded 282 usable epochs over 125 days across six UV/optical bands and the X-rays. This is the densest extended AGN UV/optical continuum sampling ever obtained, with a mean sampling rate <0.5 day. Approximately daily HST UV sampling was also obtained. The UV/optical light curves show strong correlations (r_max = 0.57 - 0.90) and the clearest measurement to date of interband lags. These lags are well-fit by a tau propto lambda^4/3 wavelength dependence, with a normalization that indicates an unexpectedly large disk radius of 0.35 +/- 0.05 lt-day at 1367 A, assuming a simple face-on model. The U-band shows a marginally larger lag than expected from the fit and surrounding bands, which could be due to Balmer continuum emission from the broad-line region as suggested by Korista and Goad. The UV/X-ray correlation is weaker (r_max < 0.45) and less consistent over time. This indicates that while Swift is beginning to measure UV/optical lags in general agreement with accretion disk theory (although the derived size is larger than predicted), the relationship with X-ray variability is less well understood. Combining this accretion disk size estimate with those from quasar microlensing studies suggests that AGN disk sizes scale approximately linearly with central black hole mass over a wide range of masses.
NGC 2617 has attracted a lot of attention after the detection of the changes in spectral type, and its geometry and kinematics of broad-line region (BLR) are still ambiguous. In this paper, we present the high cadence ($sim$ 2 days) reverberation mapping campaign of NGC 2617 from 2019 October to 2020 May undertaken at Lijiang 2.4 m telescope. For the first time, the velocity-resolved reverberation signature of the object was successfully detected. Both H$alpha$ and H$beta$ show an asymmetrical profile with a peak in the velocity-resolved time lags. For each of both lines, the lag of the line core is longer than those of the relevant wings, and the peak of the velocity-resolved lags is slightly blueshifted. These characteristics are not consistent with the theoretical prediction of the inflow, outflow or Keplerian disk model. Our observations give the time lags ofH$alpha$, H$beta$, H$gamma$, and He I, with a ratio of $tau_{rm{H}alpha}$:$tau_{rm{H}beta}$:$tau_{rm{H}gamma}$:$tau_{rm{He~I}}$ = 1.27:1.00:0.89:0.20, which indicates a stratified structure in the BLR of the object. It is the first time that the lags of H$alpha$ and He I are obtained. Assuming a virial factor of $f$ = 5.5 for dispersion width of line, the masses of black hole derived from H$alpha$ and H$beta$ are $rm{23.8^{+5.4}_{-2.7}}$ and $rm{21.1^{+3.8}_{-4.4}} times 10^{6}M_{odot}$, respectively. Our observed results indicate the complexity of the BLR of NGC 2617.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا