Do you want to publish a course? Click here

Named Entity Recognition as Dependency Parsing

89   0   0.0 ( 0 )
 Added by Juntao Yu
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Named Entity Recognition (NER) is a fundamental task in Natural Language Processing, concerned with identifying spans of text expressing references to entities. NER research is often focused on flat entities only (flat NER), ignoring the fact that entity references can be nested, as in [Bank of [China]] (Finkel and Manning, 2009). In this paper, we use ideas from graph-based dependency parsing to provide our model a global view on the input via a biaffine model (Dozat and Manning, 2017). The biaffine model scores pairs of start and end tokens in a sentence which we use to explore all spans, so that the model is able to predict named entities accurately. We show that the model works well for both nested and flat NER through evaluation on 8 corpora and achieving SoTA performance on all of them, with accuracy gains of up to 2.2 percentage points.



rate research

Read More

125 - Jiangxu Wu 2021
This paper presents a simple and effective approach in low-resource named entity recognition (NER) based on multi-hop dependency trigger. Dependency trigger refer to salient nodes relative to a entity in the dependency graph of a context sentence. Our main observation is that there often exists trigger which play an important role to recognize the location and type of entity in sentence. Previous research has used manual labelling of trigger. Our main contribution is to propose use a syntactic parser to automatically annotate trigger. Experiments on two English datasets (CONLL 2003 and BC5CDR) show that the proposed method is comparable to the previous trigger-based NER model.
Named entity recognition (NER) remains challenging when entity mentions can be discontinuous. Existing methods break the recognition process into several sequential steps. In training, they predict conditioned on the golden intermediate results, while at inference relying on the model output of the previous steps, which introduces exposure bias. To solve this problem, we first construct a segment graph for each sentence, in which each node denotes a segment (a continuous entity on its own, or a part of discontinuous entities), and an edge links two nodes that belong to the same entity. The nodes and edges can be generated respectively in one stage with a grid tagging scheme and learned jointly using a novel architecture named Mac. Then discontinuous NER can be reformulated as a non-parametric process of discovering maximal cliques in the graph and concatenating the spans in each clique. Experiments on three benchmarks show that our method outperforms the state-of-the-art (SOTA) results, with up to 3.5 percentage points improvement on F1, and achieves 5x speedup over the SOTA model.
Recent years have seen the paradigm shift of Named Entity Recognition (NER) systems from sequence labeling to span prediction. Despite its preliminary effectiveness, the span prediction models architectural bias has not been fully understood. In this paper, we first investigate the strengths and weaknesses when the span prediction model is used for named entity recognition compared with the sequence labeling framework and how to further improve it, which motivates us to make complementary advantages of systems based on different paradigms. We then reveal that span prediction, simultaneously, can serve as a system combiner to re-recognize named entities from different systems outputs. We experimentally implement 154 systems on 11 datasets, covering three languages, comprehensive results show the effectiveness of span prediction models that both serve as base NER systems and system combiners. We make all code and datasets available: url{https://github.com/neulab/spanner}, as well as an online system demo: url{http://spanner.sh}. Our model also has been deployed into the ExplainaBoard platform, which allows users to flexibly perform a system combination of top-scoring systems in an interactive way: url{http://explainaboard.nlpedia.ai/leaderboard/task-ner/}.
In this paper, we study the problem of parsing structured knowledge graphs from textual descriptions. In particular, we consider the scene graph representation that considers objects together with their attributes and relations: this representation has been proved useful across a variety of vision and language applications. We begin by introducing an alternative but equivalent edge-centric view of scene graphs that connect to dependency parses. Together with a careful redesign of label and action space, we combine the two-stage pipeline used in prior work (generic dependency parsing followed by simple post-processing) into one, enabling end-to-end training. The scene graphs generated by our learned neural dependency parser achieve an F-score similarity of 49.67% to ground truth graphs on our evaluation set, surpassing best previous approaches by 5%. We further demonstrate the effectiveness of our learned parser on image retrieval applications.
This paper presents a novel framework, MGNER, for Multi-Grained Named Entity Recognition where multiple entities or entity mentions in a sentence could be non-overlapping or totally nested. Different from traditional approaches regarding NER as a sequential labeling task and annotate entities consecutively, MGNER detects and recognizes entities on multiple granularities: it is able to recognize named entities without explicitly assuming non-overlapping or totally nested structures. MGNER consists of a Detector that examines all possible word segments and a Classifier that categorizes entities. In addition, contextual information and a self-attention mechanism are utilized throughout the framework to improve the NER performance. Experimental results show that MGNER outperforms current state-of-the-art baselines up to 4.4% in terms of the F1 score among nested/non-overlapping NER tasks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا