No Arabic abstract
We use MMT spectroscopy and deep Subaru Hyper Suprime-Cam (HSC) imaging to compare the spectroscopic central stellar velocity dispersion of quiescent galaxies with the effective dispersion of the dark matter halo derived from the stacked lensing signal. The spectroscopic survey (the Smithsonian Hectospec Lensing Survey) provides a sample of 4585 quiescent galaxy lenses with measured line-of-sight central stellar velocity dispersion ($sigma_{rm SHELS}$) that is more than 85% complete for $R < 20.6$, $D_{n}4000> 1.5$ and $M_{star} > 10^{9.5}{rm M}_{odot}$. The median redshift of the sample of lenses is 0.32. We measure the stacked lensing signal from the HSC deep imaging. The central stellar velocity dispersion is directly proportional to the velocity dispersion derived from the lensing $sigma_{rm Lens}$, $sigma_{rm Lens} = (1.05pm0.15)sigma_{rm SHELS}+(-21.17pm35.19)$. The independent spectroscopic and weak lensing velocity dispersions probe different scales, $sim3$kpc and $gtrsim$ 100 kpc, respectively, and strongly indicate that the observable central stellar velocity dispersion for quiescent galaxies is a good proxy for the velocity dispersion of the dark matter halo. We thus demonstrate the power of combining high-quality imaging and spectroscopy to shed light on the connection between galaxies and their dark matter halos.
We present Keck-I MOSFIRE near-infrared spectroscopy for a sample of 13 compact star-forming galaxies (SFGs) at redshift $2leq z leq2.5$ with star formation rates of SFR$sim$100M$_{odot}$ y$^{-1}$ and masses of log(M/M$_{odot}$)$sim10.8$. Their high integrated gas velocity dispersions of $sigma_{rm{int}}$=230$^{+40}_{-30}$ km s$^{-1}$, as measured from emission lines of H$_{alpha}$ and [OIII], and the resultant M$_{star}-sigma_{rm{int}}$ relation and M$_{star}$$-$M$_{rm{dyn}}$ all match well to those of compact quiescent galaxies at $zsim2$, as measured from stellar absorption lines. Since log(M$_{star}$/M$_{rm{dyn}}$)$=-0.06pm0.2$ dex, these compact SFGs appear to be dynamically relaxed and more evolved, i.e., more depleted in gas and dark matter ($<$13$^{+17}_{-13}$%) than their non-compact SFG counterparts at the same epoch. Without infusion of external gas, depletion timescales are short, less than $sim$300 Myr. This discovery adds another link to our new dynamical chain of evidence that compact SFGs at $zgtrsim2$ are already losing gas to become the immediate progenitors of compact quiescent galaxies by $zsim2$.
Several authors have reported that the dynamical masses of massive compact galaxies ($M_star gtrsim 10^{11} mathrm{M_odot}$, $r_mathrm{e} sim 1 mathrm{kpc}$), computed as $M_mathrm{dyn} = 5.0 sigma_mathrm{e}^2 r_mathrm{e} / G$, are lower than their stellar masses $M_star$. In a previous study from our group, the discrepancy is interpreted as a breakdown of the assumption of homology that underlie the $M_mathrm{dyn}$ determinations. Here, we present new spectroscopy of six redshift $z approx 1.0$ massive compact ellipticals from the Extended Groth Strip, obtained with the 10.4 m Gran Telescopio Canarias. We obtain velocity dispersions in the range $161-340 mathrm{km s^{-1}}$. As found by previous studies of massive compact galaxies, our velocity dispersions are lower than the virial expectation, and all of our galaxies show $M_mathrm{dyn} < M_star$ (assuming a Salpeter initial mass function). Adding data from the literature, we build a sample covering a range of stellar masses and compactness in a narrow redshift range $mathit{z approx 1.0}$. This allows us to exclude systematic effects on the data and evolutionary effects on the galaxy population, which could have affected previous studies. We confirm that mass discrepancy scales with galaxy compactness. We use the stellar mass plane ($M_star$, $sigma_mathrm{e}$, $r_mathrm{e}$) populated by our sample to constrain a generic evolution mechanism. We find that the simulations of the growth of massive ellipticals due to mergers agree with our constraints and discard the assumption of homology.
We present the velocity dispersion measurements of four massive $sim10^{11}M_odot$ quiescent galaxies at $3.2 < z < 3.7$ based on deep H and K$-$band spectra using the Keck/MOSFIRE near-infrared spectrograph. We find high velocity dispersions of order $sigma_esim250$ km/s based on strong Balmer absorption lines and combine these with size measurements based on HST/WFC3 F160W imaging to infer dynamical masses. The velocity dispersion are broadly consistent with the high stellar masses and small sizes. Together with evidence for quiescent stellar populations, the spectra confirm the existence of a population of massive galaxies that formed rapidly and quenched in the early universe $z>4$. Investigating the evolution at constant velocity dispersion between $zsim3.5$ and $zsim2$, we find a large increase in effective radius $0.35pm0.12$ dex and in dynamical-to-stellar mass ratio $<$log(M$_{textrm{dyn}}$/M*)$>$ of 0.33$pm0.08$ dex, with low expected contribution from dark matter. The dynamical masses for our $zsim3.5$ sample are consistent with the stellar masses for a Chabrier initial mass function (IMF), with the ratio $<$log(M$_{textrm{dyn}}$/M$^*_{textrm{Ch}})>$ = -0.13$pm$0.10 dex suggesting an IMF lighter than Salpeter may be common for massive quiescent galaxies at $z>3$. This is surprising in light of the Salpeter or heavier IMFs found for high velocity dispersion galaxies at $zsim2$ and cores of present-day ellipticals, which these galaxies are thought to evolve into. Future imaging and spectroscopic observations with resolved kinematics using the upcoming James Webb Space Telescope could rule out potential systematics from rotation, and confirm these results.
We present tables of velocity dispersions derived from CALIFA V1200 datacubes using Pipe3D. Four different dispersions are extracted from emission (ionized gas) or absorption (stellar) spectra, with two spatial apertures (5 and 30). Stellar and ionized gas dispersions are not interchangeable and we determine their distinguishing features. We also compare these dispersions with literature values and construct sample scaling relations to further assess their applicability. We consider revised velocity-based scaling relations using the virial velocity parameter S_K^2 = K V_rot^2 + sigma^2 constructed with each of our dispersions. Our search for the strongest linear correlation between S_K and i-band absolute magnitudes favors the common K ~ 0.5, though the range 0.3 - 0.8 is statistically acceptable. The reduction of scatter in our best stellar mass-virial velocity relations over that of a classic luminosity-velocity relation is minimal; this may however reflect the dominance of massive spirals in our sample.
We present a detailed analysis of a large sample of spectroscopically confirmed ultra-massive quiescent galaxies (${rm{log}}(M_{ast}/M_{odot})sim11.5$) at $zgtrsim2$. This sample comprises 15 galaxies selected in the COSMOS and UDS fields by their bright K-band magnitudes and followed up with VLT/X-shooter spectroscopy and HST/WFC3 $H_{F160W}$ imaging. These observations allow us to unambiguously confirm their redshifts ascertain their quiescent nature and stellar ages, and to reliably assess their internal kinematics and effective radii. We find that these galaxies are compact, consistent with the high mass end of the mass-size relation for quiescent galaxies at $z=2$. Moreover, the distribution of the measured stellar velocity dispersions of the sample is consistent with the most massive local early-type galaxies from the MASSIVE Survey showing that evolution in these galaxies, is dominated by changes in size. The HST images reveal, as surprisingly high, that $40 %$ of the sample have tidal features suggestive of mergers and companions in close proximity, including three galaxies experiencing ongoing major mergers. The absence of velocity dispersion evolution from $z=2$ to $0$, coupled with a doubling of the stellar mass, with a factor of four size increase and the observed disturbed stellar morphologies support dry minor mergers as the primary drivers of the evolution of the massive quiescent galaxies over the last 10 billion years.