No Arabic abstract
From near-infrared spectroscopic measurements of the MgII emission line doublet, we estimate the black hole (BH) mass of the quasar, SMSS J215728.21-360215.1, as being (3.4 +/- 0.6) x 10^10 M_sun and refine the redshift of the quasar to be z=4.692. SMSS J2157 is the most luminous known quasar, with a 3000A luminosity of (4.7 +/- 0.5) x 10^47 erg/s and an estimated bolometric luminosity of 1.6 x 10^48 erg/s, yet its Eddington ratio is only ~0.4. Thus, the high luminosity of this quasar is a consequence of its extremely large BH -- one of the most massive BHs at z > 4.
We report the discovery of a luminous quasar, J1007+2115 at $z=7.515$ (P={o}niu={a}ena), from our wide-field reionization-era quasar survey. J1007+2115 is the second quasar now known at $z>7.5$, deep into the reionization epoch. The quasar is powered by a $(1.5pm0.2)times10^9$ $M_{odot}$ supermassive black hole (SMBH), based on its broad MgII emission-line profile from Gemini and Keck near-IR spectroscopy. The SMBH in J1007+2115 is twice as massive as that in quasar J1342+0928 at $z=7.54$, the current quasar redshift record holder. The existence of such a massive SMBH just 700 million years after the Big Bang significantly challenges models of the earliest SMBH growth. Model assumptions of Eddington-limited accretion and a radiative efficiency of 0.1 require a seed black hole of $gtrsim 10^{4}$ $M_{odot}$ at $z=30$. This requirement suggests either a massive black hole seed as a result of direct collapse or earlier periods of rapid black hole growth with hyper-Eddington accretion and/or a low radiative efficiency. We measure the damping wing signature imprinted by neutral hydrogen absorption in the intergalactic medium (IGM) on J1007+2115s Ly$alpha$ line profile, and find that it is weaker than that of J1342+0928 and two other $zgtrsim7$ quasars. We estimate an IGM volume-averaged neutral fraction $langle xrm_{HI}rangle=0.39^{+0.22}_{-0.13}$. This range of values suggests a patchy reionization history toward different IGM sightlines. We detect the 158 $mu$m [C II] emission line in J1007+2115 with ALMA; this line centroid yields a systemic redshift of $z=7.5149pm0.0004$ and indicates a star formation rate of $sim210$ $M_{odot}$ yr$^{-1}$ in its host galaxy.
We report the discovery of an ultra-luminous quasar J030642.51+185315.8 (hereafter J0306+1853) at redshift 5.363, which hosts a super-massive black hole (SMBH) with $M_{BH} = (1.07 pm 0.27) times10^{10}~M_odot$. With an absolute magnitude $M_{1450}=-28.92$ and bolometric luminosity $L_{bol}sim3.4times10^{14} L_{odot}$, J0306+1853 is one of the most luminous objects in the early Universe. It is not likely to be a beamed source based on its small flux variability, low radio loudness and normal broad emission lines. In addition, a $z=4.986$ Damped Ly$alpha$ system (DLA) with $rm [M/H]=-1.3pm0.1$, among the most metal rich DLAs at $z gtrsim 5$, is detected in the absorption spectrum of this quasar. This ultra-luminous quasar puts strong constraint on the bright-end of quasar luminosity function and massive-end of black hole mass function. It will provide a unique laboratory to the study of BH growth and the co-evolution between BH and host galaxy with multi-wavelength follow-up observations. The future high resolution spectra will give more insights to the DLA and other absorption systems along the line-of-sight of J0306+1853.
Holm 15A, the brightest cluster galaxy (BCG) of the galaxy cluster Abell 85, has an ultra-diffuse central region, 2 mag fainter than the faintest depleted core of any early-type galaxy (ETG) that has been dynamically modelled in detail. We use orbit-based, axisymmetric Schwarzschild models to analyse the stellar kinematics of Holm 15A from new high-resolution, wide-field spectral observations obtained with MUSE at the VLT. We find a supermassive black hole (SMBH) with a mass of (4.0 +- 0.80) x 10^10 solar masses at the center of Holm 15A. This is the most massive black hole with a direct dynamical detection in the local universe. We find that the distribution of stellar orbits is increasingly biased towards tangential motions inside the core. However, the tangential bias is less than in other cored elliptical galaxies. We compare Holm 15A with N-body simulations of mergers between galaxies with black holes and find that the observed amount of tangential anisotropy and the shape of the light profile are consistent with a formation scenario where Holm 15A is the remnant of a merger between two ETGs with pre-existing depleted cores. We find that black hole masses in cored galaxies, including Holm 15A, scale inversely with the central stellar surface brightness and mass density, respectively. These correlation are independent of a specific parameterization of the light profile.
The evolution of galaxies is connected to the growth of supermassive black holes in their centers. During the quasar phase, a huge luminosity is released as matter falls onto the black hole, and radiation-driven winds can transfer most of this energy back to the host galaxy. Over five different epochs, we detected the signatures of a nearly spherical stream of highly ionized gas in the broadband X-ray spectra of the luminous quasar PDS 456. This persistent wind is expelled at relativistic speeds from the inner accretion disk, and its wide aperture suggests an effective coupling with the ambient gas. The outflows kinetic power larger than 10^46 ergs per second is enough to provide the feedback required by models of black hole and host galaxy co-evolution.
IC 10 X-1 is a variable X-ray source in the Local Group starburst galaxy IC 10 whose optical counterpart is a Wolf-Rayet (WR) star. Prestwich et al. (2007) recently proposed that it contains the most massive known stellar-mass black hole (23-34 M_sun), but their conclusion was based on radial velocities derived from only a few optical spectra, the most important of which was seriously affected by a CCD defect. Here we present new spectra of the WR star, spanning one month, obtained with the Keck-I 10 m telescope. The spectra show a periodic shift in the He II 4686 Ang. emission line as compared with IC 10 nebular lines such as [O III] 5007 Ang. From this, we calculate a period of 34.93+/-0.04 hr (consistent with the X-ray period of 34.40+/-0.83 hr reported by Prestwich et al. 2007) and a radial-velocity semi-amplitude of 370+/-20 km/s. The resulting mass function is 7.64+/-1.26 M_sun, consistent with that of Prestwich et al. (2007) (7.8 M_sun). This, combined with the previously estimated (from spectra) mass of 35 M_sun for the WR star, yields a minimum primary mass of 32.7+/-2.6 M_sun. Even if the WR star has a mass of only 17 M_sun, the minimum primary mass is 23.1+/-2.1 M_sun. Thus, IC 10 X-1 is indeed a WR/black-hole binary containing the most massive known stellar-mass black hole.