In computing electric conductivity based on the Kubo formula, the vertex corrections describe such effects as anisotropic scattering and quantum interference and are important to quantum transport properties. These vertex corrections are obtained by solving Bethe-Salpeter equations, which can become numerically intractable when a large number of k-points and multiple bands are involved. We introduce a non-iterative approach to the vertex correction based on rank factorization of the impurity vertices, which significantly alleviate the computational burden. We demonstrate that this method can be implemented along with effective Hamiltonians extracted from electronic structure calculations on perfect crystals, thereby enabling quantitative analysis of quantum effects in electron conduction for real materials.