Do you want to publish a course? Click here

Mixed GMsFEM for linear poroelasticity problems in heterogeneous porous media

122   0   0.0 ( 0 )
 Added by Xia Wang
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Accurate numerical simulations of interaction between fluid and solid play an important role in applications. The task is challenging in practical scenarios as the media are usually highly heterogeneous with very large contrast. To overcome this computational challenge, various multiscale methods are developed. In this paper, we consider a class of linear poroelasticity problems in high contrast heterogeneous porous media, and develop a mixed generalized multiscale finite element method (GMsFEM) to obtain a fast computational method. Our aim is to develop a multiscale method that is robust with respect to the heterogeneities and contrast of the media, and gives a mass conservative fluid velocity field. We will construct decoupled multiscale basis functions for the elastic displacement as well as fluid velocity. Our multiscale basis functions are local. The construction is based on some suitable choices of local snapshot spaces and local spectral decomposition, with the goal of extracting dominant modes of the solutions. For the pressure, we will use piecewise constant approximation. We will present several numerical examples to illustrate the performance of our method. Our results indicate that the proposed method is able to give accurate numerical solutions with a small degree of freedoms.



rate research

Read More

Linear poroelasticity models have a number of important applications in biology and geophysics. In particular, Biots consolidation model is a well-known model that describes the coupled interaction between the linear response of a porous elastic medium and a diffusive fluid flow within it, assuming small deformations. Although deterministic linear poroelasticity models and finite element methods for solving them numerically have been well studied, there is little work to date on robust algorithms for solving poroelasticity models with uncertain inputs and for performing uncertainty quantification (UQ). The Biot model has a number of important physical parameters and inputs whose precise values are often uncertain in real world scenarios. In this work, we introduce and analyse the well-posedness of a new five-field model with uncertain and spatially varying Youngs modulus and hydraulic conductivity field. By working with a properly weighted norm, we establish that the weak solution is stable with respect to variations in key physical parameters, including the Poisson ratio. We then introduce a novel locking-free stochastic Galerkin mixed finite element method that is robust in the incompressible limit. Armed with the `right norm, we construct a parameter-robust preconditioner for the associated discrete systems. Our new method facilitates forward UQ, allowing efficient calculation of statistical quantities of interest and is provably robust with respect to variations in the Poisson ratio, the Biot--Willis constant and the storage coefficient, as well as the discretization parameters.
Flow and multicomponent reactive transport in saturated/unsaturated porous media are modeled by ensembles of computational particles moving on regular lattices according to specific random walk rules. The occupation number of the lattice sites is updated with a global random walk (GRW) procedure which simulates the evolution of the ensemble with computational costs comparable to those for a single random walk simulation in sequential procedures. To cope with the nonlinearity and the degeneracy of the Richards equation the GRW flow solver uses linearization techniques similar to the $L$-scheme developed in finite element/volume approaches. Numerical schemes for reactive transport, coupled with the flow solver via numerical solutions for saturation and water flux, are implemented in splitting procedures. Diffusion-advection steps are solved by GRW algorithms using either biased or unbiased random walk probabilities. Since the number of particles in GRW simulations can be as large as the number of molecules involved in chemical reactions, one avoids the cumbersome problem of rescaling particle densities to approximate concentrations. Reaction steps are therefore formulated in terms of concentrations, as in deterministic approaches. The numerical convergence of the new schemes is demonstrated by comparisons with manufactured analytical solutions. Coupled flow and reactive transport problems of contaminant biodegradation described by the Monod model are further solved and the influence of flow nonlinearity/degeneracy and of the spatial heterogeneity of the medium is investigated numerically.
In this paper we present an asymptotically compatible meshfree method for solving nonlocal equations with random coefficients, describing diffusion in heterogeneous media. In particular, the random diffusivity coefficient is described by a finite-dimensional random variable or a truncated combination of random variables with the Karhunen-Lo`{e}ve decomposition, then a probabilistic collocation method (PCM) with sparse grids is employed to sample the stochastic process. On each sample, the deterministic nonlocal diffusion problem is discretized with an optimization-based meshfree quadrature rule. We present rigorous analysis for the proposed scheme and demonstrate convergence for a number of benchmark problems, showing that it sustains the asymptotic compatibility spatially and achieves an algebraic or sub-exponential convergence rate in the random coefficients space as the number of collocation points grows. Finally, to validate the applicability of this approach we consider a randomly heterogeneous nonlocal problem with a given spatial correlation structure, demonstrating that the proposed PCM approach achieves substantial speed-up compared to conventional Monte Carlo simulations.
In this paper, we systemically review and compare two mixed multiscale finite element methods (MMsFEM) for multiphase transport in highly heterogeneous media. In particular, we will consider the mixed multiscale finite element method using limited global information, simply denoted by MMsFEM, and the mixed generalized multiscale finite element method (MGMsFEM) with residual driven online multiscale basis functions. Both methods are under the framework of mixed multiscale finite element methods, where the pressure equation is solved in the coarse grid with carefully constructed multiscale basis functions for the velocity. The multiscale basis functions in both methods include local and global media information. In terms of MsFEM using limited global information, only one multiscale basis function is utilized in each local neighborhood while multiple basis are used in MGMsFEM. We will test and compare these two methods using the benchmark three-dimensional SPE10 model. A range of coarse grid sizes and different combinations of basis functions (offline and online) will be considered with CPU time reported for each case. In our numerical experiments, we observe good accuracy by the two above methods. Finally, we will discuss and compare the advantages and disadvantages of the two methods in terms of accuracy and computational costs.
In this work we consider the transport of a surfactant in a variably saturated porous media. The water flow is modelled by the Richards equations and it is fully coupled with the transport equation for the surfactant. Three linearization techniques are discussed: the Newton method, the modified Picard and the L-scheme. Based on these, monolithic and splitting schemes are proposed and their convergence is analyzed. The performance of these schemes is illustrated on four numerical examples. For these examples, the number of iterations and the condition numbers of the linear systems emerging in each iteration are presented.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا