Do you want to publish a course? Click here

A Generative Model for Generic Light Field Reconstruction

98   0   0.0 ( 0 )
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Recently deep generative models have achieved impressive progress in modeling the distribution of training data. In this work, we present for the first time a generative model for 4D light field patches using variational autoencoders to capture the data distribution of light field patches. We develop a generative model conditioned on the central view of the light field and incorporate this as a prior in an energy minimization framework to address diverse light field reconstruction tasks. While pure learning-based approaches do achieve excellent results on each instance of such a problem, their applicability is limited to the specific observation model they have been trained on. On the contrary, our trained light field generative model can be incorporated as a prior into any model-based optimization approach and therefore extend to diverse reconstruction tasks including light field view synthesis, spatial-angular super resolution and reconstruction from coded projections. Our proposed method demonstrates good reconstruction, with performance approaching end-to-end trained networks, while outperforming traditional model-based approaches on both synthetic and real scenes. Furthermore, we show that our approach enables reliable light field recovery despite distortions in the input.



rate research

Read More

465 - Gaochang Wu , Yebin Liu , Lu Fang 2020
Learning-based light field reconstruction methods demand in constructing a large receptive field by deepening the network to capture correspondences between input views. In this paper, we propose a spatial-angular attention network to perceive correspondences in the light field non-locally, and reconstruction high angular resolution light field in an end-to-end manner. Motivated by the non-local attention mechanism, a spatial-angular attention module specifically for the high-dimensional light field data is introduced to compute the responses from all the positions in the epipolar plane for each pixel in the light field, and generate an attention map that captures correspondences along the angular dimension. We then propose a multi-scale reconstruction structure to efficiently implement the non-local attention in the low spatial scale, while also preserving the high frequency components in the high spatial scales. Extensive experiments demonstrate the superior performance of the proposed spatial-angular attention network for reconstructing sparsely-sampled light fields with non-Lambertian effects.
Fusing medical images and the corresponding 3D shape representation can provide complementary information and microstructure details to improve the operational performance and accuracy in brain surgery. However, compared to the substantial image data, it is almost impossible to obtain the intraoperative 3D shape information by using physical methods such as sensor scanning, especially in minimally invasive surgery and robot-guided surgery. In this paper, a general generative adversarial network (GAN) architecture based on graph convolutional networks is proposed to reconstruct the 3D point clouds (PCs) of brains by using one single 2D image, thus relieving the limitation of acquiring 3D shape data during surgery. Specifically, a tree-structured generative mechanism is constructed to use the latent vector effectively and transfer features between hidden layers accurately. With the proposed generative model, a spontaneous image-to-PC conversion is finished in real-time. Competitive qualitative and quantitative experimental results have been achieved on our model. In multiple evaluation methods, the proposed model outperforms another common point cloud generative model PointOutNet.
Magnetic resonance imaging (MRI) is one of the best medical imaging modalities as it offers excellent spatial resolution and soft-tissue contrast. But, the usage of MRI is limited by its slow acquisition time, which makes it expensive and causes patient discomfort. In order to accelerate the acquisition, multiple deep learning networks have been proposed. Recently, Generative Adversarial Networks (GANs) have shown promising results in MRI reconstruction. The drawback with the proposed GAN based methods is it does not incorporate the prior information about the end goal which could help in better reconstruction. For instance, in the case of cardiac MRI, the physician would be interested in the heart region which is of diagnostic relevance while excluding the peripheral regions. In this work, we show that incorporating prior information about a region of interest in the model would offer better performance. Thereby, we propose a novel GAN based architecture, Reconstruction Global-Local GAN (Recon-GLGAN) for MRI reconstruction. The proposed model contains a generator and a context discriminator which incorporates global and local contextual information from images. Our model offers significant performance improvement over the baseline models. Our experiments show that the concept of a context discriminator can be extended to existing GAN based reconstruction models to offer better performance. We also demonstrate that the reconstructions from the proposed method give segmentation results similar to fully sampled images.
101 - Gaochang Wu , Yebin Liu , Lu Fang 2021
In this paper, a novel convolutional neural network (CNN)-based framework is developed for light field reconstruction from a sparse set of views. We indicate that the reconstruction can be efficiently modeled as angular restoration on an epipolar plane image (EPI). The main problem in direct reconstruction on the EPI involves an information asymmetry between the spatial and angular dimensions, where the detailed portion in the angular dimensions is damaged by undersampling. Directly upsampling or super-resolving the light field in the angular dimensions causes ghosting effects. To suppress these ghosting effects, we contribute a novel blur-restoration-deblur framework. First, the blur step is applied to extract the low-frequency components of the light field in the spatial dimensions by convolving each EPI slice with a selected blur kernel. Then, the restoration step is implemented by a CNN, which is trained to restore the angular details of the EPI. Finally, we use a non-blind deblur operation to recover the spatial high frequencies suppressed by the EPI blur. We evaluate our approach on several datasets, including synthetic scenes, real-world scenes and challenging microscope light field data. We demonstrate the high performance and robustness of the proposed framework compared with state-of-the-art algorithms. We further show extended applications, including depth enhancement and interpolation for unstructured input. More importantly, a novel rendering approach is presented by combining the proposed framework and depth information to handle large disparities.
94 - Jing Jin , Hui Liu , Junhui Hou 2021
This paper explores the problem of reconstructing high-resolution light field (LF) images from hybrid lenses, including a high-resolution camera surrounded by multiple low-resolution cameras. The performance of existing methods is still limited, as they produce either blurry results on plain textured areas or distortions around depth discontinuous boundaries. To tackle this challenge, we propose a novel end-to-end learning-based approach, which can comprehensively utilize the specific characteristics of the input from two complementary and parallel perspectives. Specifically, one module regresses a spatially consistent intermediate estimation by learning a deep multidimensional and cross-domain feature representation, while the other module warps another intermediate estimation, which maintains the high-frequency textures, by propagating the information of the high-resolution view. We finally leverage the advantages of the two intermediate estimations adaptively via the learned attention maps, leading to the final high-resolution LF image with satisfactory results on both plain textured areas and depth discontinuous boundaries. Besides, to promote the effectiveness of our method trained with simulated hybrid data on real hybrid data captured by a hybrid LF imaging system, we carefully design the network architecture and the training strategy. Extensive experiments on both real and simulated hybrid data demonstrate the significant superiority of our approach over state-of-the-art ones. To the best of our knowledge, this is the first end-to-end deep learning method for LF reconstruction from a real hybrid input. We believe our framework could potentially decrease the cost of high-resolution LF data acquisition and benefit LF data storage and transmission.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا