Do you want to publish a course? Click here

Local Banach-space dichotomies and ergodic spaces

91   0   0.0 ( 0 )
 Added by No\\'e de Rancourt
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

We prove a local version of Gowers Ramsey-type theorem [21], as well as loc



rate research

Read More

A subset $A$ of a Banach space is called Banach-Saks when every sequence in $A$ has a Ces{`a}ro convergent subsequence. Our interest here focusses on the following problem: is the convex hull of a Banach-Saks set again Banach-Saks? By means of a combinatorial argument, we show that in general the answer is negative. However, sufficient conditions are given in order to obtain a positive result.
231 - Piotr Mikusinski 2014
The purpose of this article is to present the construction and basic properties of the general Bochner integral. The approach presented here is based on the ideas from the book The Bochner Integral by J. Mikusinski where the integral is presented for functions defined on $mathbb{R}^N$. In this article we present a more general and simplified construction of the Bochner integral on abstract measure spaces. An extension of the construction to functions with values in a locally convex space is also considered.
We introduce the class of slicely countably determined Banach spaces which contains in particular all spaces with the RNP and all spaces without copies of $ell_1$. We present many examples and several properties of this class. We give some applications to Banach spaces with the Daugavet and the alternative Daugavet properties, lush spaces and Banach spaces with numerical index 1. In particular, we show that the dual of a real infinite-dimensional Banach with the alternative Daugavet property contains $ell_1$ and that operators which do not fix copies of $ell_1$ on a space with the alternative Daugavet property satisfy the alternative Daugavet equation.
We prove that every isometry between two combinatorial spaces is determined by a permutation of the canonical unit basis combined with a change of signs. As a consequence, we show that in the case of Schreier spaces, all the isometries are given by a change of signs of the elements of the basis. Our results hold for both the real and the complex cases.
We study some fundamental properties of semicocycles over semigroups of self-mappings of a domain in a Banach space. We prove that any semicocycle over a jointly continuous semigroup is itself jointly continuous. For semicocycles over semigroups which have generator, we establish a sufficient condition for differentiablity with respect to the time variable, and hence for the semicocycle to satisfy a linear evolution problem, giving rise to the notion of `generator of a semicocycle. Bounds on the growth of a semicocycle with respect to the time variable are given in terms of this generator. Special consideration is given to the case of holomorphic semicocycles, for which we prove an exact correspondence between certain uniform continuity properties of a semicocyle and boundedness properties of its generator.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا