Double exceptional links in a three-dimensional dissipative cold atomic gas


Abstract in English

We explore the topological properties of non-Hermitian nodal-link semimetals with dissipative cold atoms in a three-dimensional optical lattice. We construct a two-band continuum model in three dimensions with a spin-dependent gain and loss, where the exceptional points in the energy spectrum can comprise a double Hopf link. The topology of the bulk band is characterized by a winding number defined for a one-dimensional loop in the momentum space and a topological transition of the nodal structures emerges as the change of the non-Hermiticity strength. A non-Bloch theory is built to describe the corresponding lattice model which has anomalous bulk-boundary correspondence. Furthermore, we propose that the model can be realized using ultracold fermionic atoms in an optical lattice and the exceptional nodal links as well as the topological properties can be detected by measuring the atomic spin textures.

Download