The at-most-k constraint is ubiquitous in combinatorial problems, and numerous SAT encodings are available for the constraint. Prior experiments have shown the competitiveness of the sequential-counter encoding for k $>$ 1, and have excluded the parallel-counter encoding, which is more compact that the binary-adder encoding, from consideration due to its incapability of enforcing arc consistency through unit propagation. This paper presents an experiment that shows astounding performance of the binary-adder encoding for the at-most-k constraint.