We consider black hole formation in failed supernovae when a dense circumstellar medium (CSM) is present around the massive star progenitor. By utilizing radiation hydrodynamical simulations, we calculate the mass ejection of blue supergiants and Wolf-Rayet stars in the collapsing phase and the radiative shock occurring between the ejecta and the ambient CSM. We find that the resultant emission is redder and dimmer than normal supernovae (bolometric luminosity of $sim 10^{40}-10^{41} {rm erg s^{-1}}$, effective temperature of $sim 5times 10^3$ K, and timescale of 10-100 days) and shows a characteristic power-law decay, which may comprise a fraction of intermediate luminosity red transients (ILRTs) including AT 2017be. In addition to searching for the progenitor star in the archival data, we encourage X-ray follow-up observations of such ILRTs $sim$ 1-10 yr after the collapse, targeting the fallback accretion disk.