On the inversion of isobaric-analogue states in nuclei


Abstract in English

Isospin is an approximate symmetry in atomic nuclei, arising from the rather similar properties of protons and neutrons. Perhaps the clearest manifestation of isospin within nuclei is in the near-identical structure of excited states in mirror nuclei: nuclei with inverted numbers of protons and neutrons. Isospin symmetry, and therefore mirror-symmetry, is broken by electromagnetic interactions and the difference in the masses of the up and down quarks. A recent study by Hoff and collaborators presented evidence that the ground-state spin of $^{73}$Sr is different from that of its mirror, $^{73}$Br, due to an inversion of the ground- and first-excited states, separated by only 27 keV in the $^{73}$Br system. In this brief note, we place this inversion within the necessary context of the past half-century of experimental and theoretical work, and show that it is entirely consistent with normal behaviour, and affords no new insight into isospin-symmetry breaking. The essential point is that isospin-breaking effects due to the Coulomb interaction frequently vary from level to level within a given medium-mass nucleus by as much as 200 keV. Any level splitting smaller than this is liable to manifest a level inversion in the mirror partner which, absent disagreement with an appropriate nuclear model, does not challenge our understanding. While we note the novelty of an inversion in nuclear ground states, we emphasize that in the context of isospin there is nothing specifically illuminating about the ground state, or a level inversion.

Download