Shot noise processes have been extensively studied due to their mathematical properties and their relevance in several applications. Here, we consider nonnegative shot noise processes and prove their weak convergence to Levy-driven Ornstein-Uhlenbeck (OU), whose features depend on the underlying jump distributions. Among others, we obtain the OU-Gamma and OU-Inverse Gaussian processes, having gamma and inverse gaussian processes as background Levy processes, respectively. Then, we derive the necessary conditions guaranteeing the diffusion limit to a Gaussian OU process, show that they are not met unless allowing for negative jumps happening with probability going to zero, and quantify the error occurred when replacing the shot noise with the OU process and the non-Gaussian OU processes. The results offer a new class of models to be used instead of the commonly applied Gaussian OU processes to approximate synaptic input currents, membrane voltages or conductances modelled by shot noise in single neuron modelling.