No Arabic abstract
First-principles electronic structure calculations are very widely used thanks to the many successful software packages available. Their traditional coding paradigm is monolithic, i.e., regardless of how modular its internal structure may be, the code is built independently from others, from the compiler up, with the exception of linear-algebra and message-passing libraries. This model has been quite successful for decades. The rapid progress in methodology, however, has resulted in an ever increasing complexity of those programs, which implies a growing amount of replication in coding and in the recurrent re-engineering needed to adapt to evolving hardware architecture. The Electronic Structure Library (esl) was initiated by CECAM (European Centre for Atomic and Molecular Calculations) to catalyze a paradigm shift away from the monolithic model and promote modularization, with the ambition to extract common tasks from electronic structure programs and redesign them as free, open-source libraries. They include heavy-duty ones with a high degree of parallelisation, and potential for adaptation to novel hardware within them, thereby separating the sophisticated computer science aspects of performance optimization and re-engineering from the computational science done by scientists when implementing new ideas. It is a community effort, undertaken by developers of various successful codes, now facing the challenges arising in the new model. This modular paradigm will improve overall coding efficiency and enable specialists (computer scientists or computational scientists) to use their skills more effectively. It will lead to a more sustainable and dynamic evolution of software as well as lower barriers to entry for new developers.
Magnetic topological materials, in which the time-reversal symmetry is broken, host various exotic quantum phenomena, including the quantum anomalous Hall effect, axion insulator states, and Majorana fermions. The study of magnetic topological materials is at the forefront of condensed matter physics. Recently, a variety of magnetic topological materials have been reported, such as Mn$_3$Sn, Co$_3$Sn$_2$S$_2$, Fe$_3$Sn$_2$, and MnBi$_2$Te$_4$. Here, we report the observation of a topological electronic structure in an antiferromagnet, HoSbTe, a member of the ZrSiS family of materials, by angle-resolved photoemission spectroscopy measurements and first-principles calculations. We demonstrate that HoSbTe is a Dirac nodal line semimetal when spin-orbit coupling (SOC) is neglected. However, our theoretical calculations show that the strong SOC in HoSbTe fully gaps out the nodal lines and drives the system to a weak topological insulator state, with each layer being a two-dimensional topological insulator. Because of the strong SOC in HoSbTe, the gap is as large as hundreds of meV along specific directions, which is directly observed by our ARPES measurements. The existence of magnetic order and topological properties in HoSbTe makes it a promising material for realization of exotic quantum devices.
Recently, the EuS/InAs interface has attracted attention for the possibility of inducing magnetic exchange correlations in a strong spin-orbit semiconductor, which could be useful for topological quantum devices. We use density functional theory (DFT) with a machine-learned Hubbard $U$ correction [npj Comput. Mater. 6, 180 (2020)] to elucidate the effect of the bonding configuration at the interface on the electronic structure. For all interface configurations considered here, we find that the EuS valence band maximum (VBM) lies below the InAs VBM. In addition, dispersed states emerge at the top of the InAs VBM at the interface, which do not exist in either material separately. These states are contributed mainly by the InAs layer adjacent to the interface. They are localized at the interface and may be attributed to charge transfer from the EuS to the InAs. The interface configuration affects the position of the EuS VBM with respect to the InAs VBM, as well as the dispersion of the interface state. For all interface configurations studied here, the induced magnetic moment in the InAs is small. This suggests that this interface, in its coherent form studied here, is not promising for inducing equilibrium magnetic properties in InAs.
In this work we present RESCU, a powerful MATLAB-based Kohn-Sham density functional theory (KS-DFT) solver. We demonstrate that RESCU can compute the electronic structure properties of systems comprising many thousands of atoms using modest computer resources, e.g. 16 to 256 cores. Its computational efficiency is achieved from exploiting four routes. First, we use numerical atomic orbital (NAO) techniques to efficiently generate a good quality initial subspace which is crucially required by Chebyshev filtering methods. Second, we exploit the fact that only a subspace spanning the occupied Kohn-Sham states is required, and solving accurately the KS equation using eigensolvers can generally be avoided. Third, by judiciously analyzing and optimizing various parts of the procedure in RESCU, we delay the $O(N^3)$ scaling to large $N$, and our tests show that RESCU scales consistently as $O(N^{2.3})$ from a few hundred atoms to more than 5,000 atoms when using a real space grid discretization. The scaling is better or comparable in a NAO basis up to the 14,000 atoms level. Fourth, we exploit various numerical algorithms and, in particular, we introduce a partial Rayleigh-Ritz algorithm to achieve efficiency gains for systems comprising more than 10,000 electrons. We demonstrate the power of RESCU in solving KS-DFT problems using many examples running on 16, 64 and/or 256 cores: a 5,832 Si atoms supercell; a 8,788 Al atoms supercell; a 5,324 Cu atoms supercell and a small DNA molecule submerged in 1,713 water molecules for a total 5,399 atoms. The KS-DFT is entirely converged in a few hours in all cases. Our results suggest that the RESCU method has reached a milestone of solving thousands of atoms by KS-DFT on a modest computer cluster.
The PyProcar Python package plots the band structure and the Fermi surface as a function of site and/or s,p,d,f - projected wavefunctions obtained for each $k$-point in the Brillouin zone and band in an electronic structure calculation. This can be performed on top of any electronic structure code, as long as the band and projection information is written in the PROCAR format, as done by the VASP and ABINIT codes. PyProcar can be easily modified to read other formats as well. This package is particularly suitable for understanding atomic effects into the band structure, Fermi surface, spin texture, etc. PyProcar can be conveniently used in a command line mode, where each one of the parameters define a plot property. In the case of Fermi-surfaces, the package is able to plot the surface with colors depending on other properties such as the electron velocity or spin projection. The mesh used to calculate the property does not need to be the same as the one used to obtain the Fermi surface. A file with a specific property evaluated for each $k$-point in a $k-$mesh and for each band can be used to project other properties such as electron-phonon mean path, Fermi velocity, electron effective mass, etc. Another existing feature refers to the band unfolding of supercell calculations into predefined unit cells.
The electronic structure of surfaces plays a key role in the properties of quantum devices. However, surfaces are also the most challenging to simulate and engineer. Here, we study the electronic structure of InAs(001), InAs(111), and InSb(110) surfaces using a combination of density functional theory (DFT) and angle-resolved photoemission spectroscopy (ARPES). We were able to perform large-scale first principles simulations and capture effects of different surface reconstructions by using DFT calculations with a machine-learned Hubbard U correction [npj Comput. Mater. 6, 180 (2020)]. To facilitate direct comparison with ARPES results, we implemented a bulk unfolding scheme by projecting the calculated band structure of a supercell surface slab model onto the bulk primitive cell. For all three surfaces, we find a good agreement between DFT calculations and ARPES. For InAs(001), the simulations clarify the effect of the surface reconstruction. Different reconstructions are found to produce distinctive surface states. For InAs(111) and InSb(110), the simulations help elucidate the effect of oxidation. Owing to larger charge transfer from As to O than from Sb to O, oxidation of InAs(111) leads to significant band bending and produces an electron pocket, whereas oxidation of InSb(110) does not. Our combined theoretical and experimental results may inform the design of quantum devices based on InAs and InSb semiconductors, e.g., topological qubits utilizing the Majorana zero modes.