First-principles based theory of spin-orbit coupling induced triplet pairing: Application to the superconducting ground state of rhenium


Abstract in English

Recent $mu$SR measurements revealed that spontaneous magnetism exists in the superconducting state of rhenium and it also appears in other rhenium based materials like Re$_6$Zr, Re$_6$Hf, Re$_6$Ti. The superconducting state of these materials show $s$-wave-like properties and the pairing mechanism is most likely driven by electron-phonon coupling. In this paper we take elemental rhenium as a testbed and investigate its ground state. By developing an LCAO formalism for the solution of the spin-generalized Bogoliubov-de Gennes equation we use every details of the first-principles band-structure together with spin-orbit coupling. In this paper we provide a possible explanation of the spontaneous time-reverseal symmetry breaking in the superconducting ground state of rhenium by arguing that taking into account the orbital degrees of freedom, spin-orbit coupling is inducing even-parity odd-orbital spin triplet Cooper pairs, and Cooper pairs migration between the equal-spin triplet states may lower the total energy. We show how magnetism emerges and the structure of the gap changes as a function of the triplet component of the interaction strength.

Download