No Arabic abstract
We consider the Abelian Higgs model in the broken phase as a spectator in cosmological spaces of general $D$ space-time dimensions, and allow for the condensate to be time-dependent. We fix the unitary gauge using Diracs formalism for constrained systems, and then quantize the gauge-fixed system. Vector and scalar perturbations develop time-dependent masses. We work out their propagators assuming the cosmological background is that of power-law inflation, characterized by a constant principal slow-roll parameter, and that the scalar condensate is in the attractor regime, scaling as the Hubble rate. Our propagators correctly reduce to known results in the Minkowski and de Sitter space limits. We use the vector propagator to compute the equal-time correlators of electric and magnetic fields and find that at super-Hubble separations the former is enhanced, while the latter is suppressed compared to the vacuum fluctuations of the massless vector field. These correlators satisfy the hierarchy governed by Faradays law.
In this paper, we extend our investigation of the validity of the cosmic no-hair conjecture within non-canonical anisotropic inflation. As a result, we are able to figure out an exact Bianchi type I solution to a power-law {it k}-inflation model in the presence of unusual coupling between scalar and electromagnetic fields as $-f^2(phi)F_{mu u}F^{mu u}/4$. Furthermore, stability analysis based on the dynamical system method indicates that the obtained solution does admit stable and attractive hairs during an inflationary phase and therefore violates the cosmic no-hair conjecture. Finally, we show that the corresponding tensor-to-scalar ratio of this model turns out to be highly consistent with the observational data of the Planck 2018.
We examine whether an extended scenario of a two-scalar-field model, in which a mixed kinetic term of canonical and phantom scalar fields is involved, admits the Bianchi type I metric, which is homogeneous but anisotropic spacetime, as its power-law solutions. Then we analyze the stability of the anisotropic power-law solutions to see whether these solutions respect the cosmic no-hair conjecture or not during the inflationary phase. In addition, we will also investigate a special scenario, where the pure kinetic terms of canonical and phantom fields disappear altogether in field equations, to test again the validity of cosmic no-hair conjecture. As a result, the cosmic no-hair conjecture always holds in both these scenarios due to the instability of the corresponding anisotropic inflationary solutions.
We examine the effect of the thermal vacuum on the power spectrum of inflation by using the thermal field dynamics. We find that the thermal effect influences the CMB anisotropy at large length scale. After removing the divergence by using the holographic cutoff, we observe that the thermal vacuum explains well the observational CMB result at low multipoles. This shows that the temperature dependent factor should be considered in the study of power spectrum in inflation, especially at large length scale.
In this paper we investigate the cosmological dynamics of geometric inflation by means of the tools of the dynamical systems theory. We focus in the study of two explicit models where it is possible to sum the infinite series of higher curvature corrections that arises in the formalism. These would be very interesting possibilities since, if regard gravity as a quantum effective theory, a key feature is that higher powers of the curvature invariants are involved at higher loops. Hence, naively, consideration of the whole infinite tower of curvature invariants amounts to consideration of all of the higher order loops. The global dynamics of these toy models in the phase space is discussed and the quantum origin of primordial inflation is exposed.
Inspired by an interesting counterexample to the cosmic no-hair conjecture found in a supergravity-motivated model recently, we propose a multi-field extension, in which two scalar fields are allowed to non-minimally couple to two vector fields, respectively. This model is shown to admit an exact Bianchi type I power-law solution. Furthermore, stability analysis based on the dynamical system method is performed to show that this anisotropic solution is indeed stable and attractive if both scalar fields are canonical. Nevertheless, if one of the two scalar fields is phantom then the corresponding anisotropic power-law inflation turns unstable as expected.