Model-based Systems Engineering (MBSE) has been widely utilized to formalize system artifacts and facilitate their development throughout the entire lifecycle. During complex system development, MBSE models need to be frequently exchanged across stakeholders. Concerns about data security and tampering using traditional data exchange approaches obstruct the construction of a reliable marketplace for digital assets. The emerging Distributed Ledger Technology (DLT), represented by blockchain, provides a novel solution for this purpose owing to its unique advantages such as tamper-resistant and decentralization. In this paper, we integrate MBSE approaches with DLT aiming to create a decentralized marketplace to facilitate the exchange of digital engineering assets (DEAs). We first define DEAs from perspectives of digital engineering objects, development processes and system architectures. Based on this definition, the Graph-Object-Property-Point-Role-Relationship (GOPPRR) approach is used to formalize the DEAs. Then we propose a framework of a decentralized DEAs marketplace and specify the requirements, based on which we select a Directed Acyclic Graph (DAG) structured DLT solution. As a proof-of-concept, a prototype of the proposed DEAs marketplace is developed and a case study is conducted to verify its feasibility. The experiment results demonstrate that the proposed marketplace facilitates free DEAs exchange with a high level of security, efficiency and decentralization.