Do you want to publish a course? Click here

Testing the violation of the equivalence principle in the electromagnetic sector and its consequences in $f(T)$ gravity

117   0   0.0 ( 0 )
 Added by Jurgen Mifsud
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

A violation of the distance-duality relation is directly linked with a temporal variation of the electromagnetic fine-structure constant. We consider a number of well-studied $f(T)$ gravity models and we revise the theoretical prediction of their corresponding induced violation of the distance-duality relationship. We further extract constraints on the involved model parameters through fine-structure constant variation data, alongside with supernovae data, and Hubble parameter measurements. Moreover, we constrain the evolution of the effective $f(T)$ gravitational constant. Finally, we compare with revised constraints on the phenomenological parametrisations of the violation of the equivalence principle in the electromagnetic sector.



rate research

Read More

134 - A. Hees , O. Minazzoli , J. Larena 2014
This paper proposes a systematic study of cosmological signatures of modifications of gravity via the presence of a scalar field with a multiplicative coupling to the electromagnetic Lagrangian. We show that, in this framework, variations of the fine structure constant, violations of the distance duality relation, evolution of the cosmic microwave background (CMB) temperature and CMB distortions are intimately and unequivocally linked. This enables one to put very stringent constraints on possible violations of the distance duality relation, on the evolution of the CMB temperature and on admissible CMB distortions using current constraints on the fine structure constant. Alternatively, this offers interesting possibilities to test a wide range of theories of gravity by analysing several datasets concurrently. We discuss results obtained using current data as well as some forecasts for future data sets such as those coming from EUCLID or the SKA.
We study the equivalence principle, regarded as the cornerstone of general relativity, by analyzing the deformation observable of black hole shadows. Such deformation can arise from new physics and may be expressed as a phenomenological violation of the equivalence principle. Specifically, we assume that there is an additional background vector field that couples to the photons around the supermassive black hole. This type of coupling yields impact on the way the system depends on initial conditions, and affects the black hole shadow at different wavelengths by a different amount, and therefore observations of the shadow in different wavelengths could constrain such couplings. This can be tested by future multi-band observations. Adopting a specific form of the vector field, we obtain constraints on model parameters from Event Horizon Telescope observations and measurements of gas/stellar orbits.
We investigate the cosmological perturbations in f(T) gravity. Examining the pure gravitational perturbations in the scalar sector using a diagonal vierbien, we extract the corresponding dispersion relation, which provides a constraint on the f(T) ansatzes that lead to a theory free of instabilities. Additionally, upon inclusion of the matter perturbations, we derive the fully perturbed equations of motion, and we study the growth of matter overdensities. We show that f(T) gravity with f(T) constant coincides with General Relativity, both at the background as well as at the first-order perturbation level. Applying our formalism to the power-law model we find that on large subhorizon scales (O(100 Mpc) or larger), the evolution of matter overdensity will differ from LCDM cosmology. Finally, examining the linear perturbations of the vector and tensor sectors, we find that (for the standard choice of vierbein) f(T) gravity is free of massive gravitons.
We show that the f(T) gravitational paradigm, in which gravity is described by an arbitrary function of the torsion scalar, can provide a mechanism for realizing bouncing cosmologies, thereby avoiding the Big Bang singularity. After constructing the simplest version of an f(T) matter bounce, we investigate the scalar and tensor modes of cosmological perturbations. Our results show that metric perturbations in the scalar sector lead to a background-dependent sound speed, which is a distinguishable feature from Einstein gravity. Additionally, we obtain a scale-invariant primordial power spectrum, which is consistent with cosmological observations, but suffers from the problem of a large tensor-to-scalar ratio. However, this can be avoided by introducing extra fields, such as a matter bounce curvaton.
Today we have quite stringent constraints on possible violations of the Weak Equivalence Principle from the comparison of the acceleration of test-bodies of different composition in Earths gravitational field. In the present paper, we propose a test of the Weak Equivalence Principle in the strong gravitational field of black holes. We construct a relativistic reflection model in which either the massive particles of the gas of the accretion disk or the photons emitted by the disk may not follow the geodesics of the spacetime. We employ our model to analyze the reflection features of a NuSTAR spectrum of the black hole binary EXO 1846-031 and we constrain two parameters that quantify a possible violation of the Weak Equivalence Principle by massive particles and X-ray photons, respectively.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا