No Arabic abstract
In this paper we study the light bending caused by a slowly rotating source in the context of quadratic theories of gravity, in which the Einstein--Hilbert action is extended by additional terms quadratic in the curvature tensors. The deflection angle is computed employing the method based on the Gauss--Bonnet theorem and working in the approximation of a weak lens; also, we assume that the source and observer are at an infinite distance. The formalism presented is very general and applies to any spacetime metric in the limit of weak gravitational field and slow rotation. We find the explicit formula for the deflection angle for several local and nonlocal theories, and also discuss some phenomenological implications.
We show that in the weak field limit the light deflection alone cannot distinguish between different $R + F[g(square)R]$ models of gravity, where $F$ and $g$ are arbitrary functions. This does not imply, however, that in all these theories an observer will see the same deflection angle. Owed to the need to calibrate the Newton constant, the deflection angle may be model-dependent after all necessary types of measurements are taken into account.
Using gravitational wave observations to search for deviations from general relativity in the strong-gravity regime has become an important research direction. Chern Simons (CS) gravity is one of the most frequently studied parity-violating models of strong gravity. It is known that the Kerr black-hole is not a solution for CS gravity. At the same time, the only rotating solution available in the literature for dynamical CS (dCS) gravity is the slow-rotating case most accurately known to quadratic order in spin. In this work, for the slow-rotating case (accurate to first order in spin), we derive the linear perturbation equations governing the metric and the dCS field accurate to linear order in spin and quadratic order in the CS coupling parameter ($alpha$) and obtain the quasi-normal mode (QNM) frequencies. After confirming the recent results of Wagle et al. (2021), we find an additional contribution to the eigenfrequency correction at the leading perturbative order of $alpha^2$. Unlike Wagle et al., we also find corrections to frequencies in the polar sector. We compute these extra corrections by evaluating the expectation values of the perturbative potential on unperturbed QNM wavefunctions along a contour deformed into the complex-$r$ plane. For $alpha=0.1 M^2$, we obtain the ratio of the imaginary parts of the dCS correction to the GR correction in the first QNM frequency (in the polar sector) to be $0.263$ implying significant change. For the $(2,2)-$mode, the dCS corrections make the imaginary part of the first QNM of the fundamental mode less negative, thereby decreasing the decay rate. Our results, along with future gravitational wave observations, can be used to test for dCS gravity and further constrain the CS coupling parameters. [abridged]
We study isotropic and slowly-rotating stars made of dark energy adopting the extended Chaplygin equation-of-state. We compute the moment of inertia as a function of the mass of the stars, both for rotating and non-rotating objects. The solution for the non-diagonal metric component as a function of the radial coordinate for three different star masses is shown as well. We find that i) the moment of inertia increases with the mass of the star, ii) in the case of non-rotating objects the moment of inertia grows faster, and iii) the curve corresponding to rotation lies below the one corresponding to non-rotating stars.
We construct slowly rotating black-hole solutions of Einsteinian cubic gravity (ECG) in four dimensions with flat and AdS asymptotes. At leading order in the rotation parameter, the only modification with respect to the static case is the appearance of a non-vanishing $g_{tphi}$ component. Similarly to the static case, the order of the equation determining such component can be reduced twice, giving rise to a second-order differential equation which can be easily solved numerically as a function of the ECG coupling. We study how various physical properties of the solutions are modified with respect to the Einstein gravity case, including its angular velocity, photon sphere, photon rings, shadow, and innermost stable circular orbits (in the case of timelike geodesics).
In this paper we will provide a non-singular rotating space time metric for a ghost free infinite derivative theory of gravity. We will provide the predictions for the Lense-Thirring effect for a slowly rotating system, and how it is compared with that from general relativity.